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ABSTRACT 

A novel method for analyzing delay discounting data is proposed. This newer metric, a 

model-based Area Under Curve (AUC) combining approximate Bayesian model selection and 

numerical integration was compared to the point-based AUC method developed by Myerson, 

Green & Warusawitharana (2001). Using data from Monte Carlo simulation and published study 

data, comparisons of the two methods indicated that model-based AUC offered a more robust 

measurement of discounting than provided by the point-based method alone. Beyond a 

calculation of area, numerical integration methods permitted discounting model selection to 

proceed in cases when the Effective Delay 50 (ED50) measure could not be calculated. This 

allowed discounting model selection to proceed in conditions where data are traditionally more 

challenging to model and measure, a situation where area-based methods are often enlisted. 

Results from simulation and existing data indicated that numerical integration methods extended 

both the area-based interpretation of delay discounting as well as the discounting model selection 

approach. Limitations of point-based AUC as a first-line analysis of discounting and additional 

extensions of discounting model selection were also discussed.  
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INTRODUCTION 

Temporal discounting, or delay discounting, is an account of how the value of items or 

events change as a function of their distance from the present (Chung & Herrnstein, 1967; 

Ainslie, 1975; Mazur, 1987; Green, Fry & Myerson, 1994). Established in both human and 

nonhuman animal decision-making research, delay discounting presents an account of how 

organisms adapt in a complex and uncertain world (Ainslie, 1975; Ainslie & Herrnstein, 1981; 

Mazur, 1987; Critchfield & Kollins, 2001). For both human and nonhuman subjects, discounting 

procedures permit analyses of decision-making as delays to rewards are manipulated and 

differences in choices are observed (Kirby & Herrnstein, 1995). While hundreds of studies have 

utilized delay discounting procedures to analyze human and nonhuman choice, the theories and 

frameworks for analyzing and interpreting these phenomena have varied considerably (Ainslie, 

1975; Rachlin, 2000; Madden & Bickel, 2010; Doyle, 2013). 

Researchers in economics, marketing, psychology, and decision analysis have produced 

related, but contrasting accounts of how individuals arrive at specific delayed and temporally 

extended choices (Laibson, 1997; Doyle, 2013; van den Bos, & McClure, 2013). While few 

would dispute that the subjective value of an item is influenced by its distance from the present, 

the specific mechanism and course of these changes remains a particularly contentious topic 

(Samuelson, 1937; Ainslie, 1975; Laibson, 1997; Green & Myerson, 2004, Rachlin, 2006; van 

den Bos, & McClure, 2013). Debate continues between researchers as to whether the hyperbolic 

(Ainslie, 1975), exponential (Samuelson, 1937), quasi-hyperbolic (Laibson, 1997), or some 

hyperboloid model variant (Green & Myerson, 2004; Rachlin, 2006) is the best suited model for 

analyzing intertemporal choice. Doyle (2013) presents an extensive review of these models, as 

well as others. 
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Despite decades of research and hundreds of studies in this area, no single model has 

been able to adequately characterize all instances of individual intertemporal choice (Laibson, 

1997; van den Bos & McClure, 2013). Traditional methods have historically employed single 

parameter models (e.g., exponential, hyperbolic), though more recent models have introduced 

additional parameters, augmenting the shape and characteristics of either the exponential (e.g., 

Quasi-Hyperbolic) or hyperbolic model (e.g., Hyperboloid) models (Ainslie, 1975; Green & 

Myerson, 2004; Laibson, 1997; Rachlin, 2006). Beyond these modifications, some have argued 

that discounting models should broaden much further to better account for other biological, 

neurological and contextual factors (van den Bos & McClure, 2013). In a break from model 

fitting altogether, others have proposed interpreting intertemporal choice data more simply and 

directly as the empirical discounting function (Myerson et al., 2001). 

Myerson et al (2001) proposed the use of AUC, a measure of individual decision-making 

constructed by calculating the area beneath pairs of data points, interpolated with straight lines, 

and dividing the sum of these segments by the total possible area. Myerson and colleagues 

referred to this interpolation between data points as the empirical discounting function, hereafter 

referred to as point-based AUC, a conceptually-neutral method for quantifying choice over time. 

Point-based AUC linearly interpolates between pairs of data points with the underlying 

assumption that straight-line approximations provide a conceptually-neutral estimation of data at 

unmeasured delays. That is, the empirical discounting function uses a series of straight lines to 

estimate a “curve” of sorts. While not a model in the traditional sense, the interpolation 

constructed using the empirical discounting function could be viewed as a sort of saturated, 

segmented model. Such a model would contain as many parameters as there are data points, 

connected by linear segments, to the effect of linearly interpolating the observed data. The 
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empirical discounting function operates in this way, reconstructing the data “perfectly” by 

connecting data with straight lines (e.g., a makeshift curve). 

The empirical discounting function (point-based AUC) shares several of the same 

limitations inherent in saturated models. First, this type of model cannot be compared to any 

other because there is no error variance available to analyze. By interpolating the data with 

straight lines, the function passes through each point perfectly (e.g., no residual error). The fit is 

“perfect”, in that the model is essentially a re-construction of the observed data. Without a means 

to make comparisons with other models, it cannot be determined whether any other model could 

more simply and effectively account for that data. That is, the empirical discounting function can 

only ever be compared to itself. Second, this type of model is essentially a re-construction of the 

observed data. The model is an interpolation of the data and any projections beyond the data 

provided would be highly questionable and inappropriate. For example, the empirical 

discounting function cannot make predictions at unmeasured delays that are before the initial or 

after the final observed data point. Further, it assumes that any delays between the measured 

points in the dataset will perfectly follow that linear path between the measured points. As a 

result of these limitations, the empirical discounting function offers a basic summary of the 

available data but little in the way of predictive value--it can summarize data but not explain how 

delays affect choice behavior. 

Discounting researchers who have traditionally used point-based AUC in lieu of model 

fitting likely elected to do so for one of several reasons. First, discounting data are inherently 

variable and it is often the case that instances of discounting can vary substantially from 

individual to individual. As a result, individual discounting patterns can and will be better 

characterized by different types of discounting models (Franck et al., 2015). Researchers 
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planning to use some prescribed or assumed model (e.g., hyperbolic) for all participants in a 

study may find themselves foregoing model fitting altogether and instead applying point-based 

AUC methods when a model of interest does not fit well with one or more participants. For these 

participants, researchers may elect to instead use the point-based AUC method to summarize the 

observed data of each participant, rather than explore alternative models. Second, point-based 

AUC methods do not require specialized software to compute and preclude the need to apply any 

model fitting techniques (Myerson et al., 2001). It is computationally simple to perform, is 

readily calculated by hand or with basic spreadsheet software (e.g., Kaplan et al., 2016) and does 

not require the researcher to systematically compare other competing models. 

While point-based methods are considerably simpler to compute, this simplicity is not 

without caveats. Point-based AUC calculations remain conceptually neutral throughout analysis. 

It is always possible that some alternative model may more simply represent the data. To remain 

conceptually neutral, point-based AUC operates with certain assumptions. First, this method 

assumes that data are visually inspected to determine that some degree of discounting actually 

took place (Myerson et al., 2001). This assumption is paramount, as it is typically regarded that 

the point-based AUC measure generally represents a downward sloping function. Visual analysis 

is required for every data series in this approach because point-based AUC methods will provide 

a summary of the data regardless of whether discounting has taken place. For example, consider 

a case in which three participants in a typical delay discounting task yielded data in which the 

point-based AUC is identical. As illustrated in Figure 1, one participant may have discounted 

(downward slope) while the others may have shown either a noise pattern (no systematic slope) 

or accretion (upward slope). Regardless of the direction of the data, the point-based measurement 

of AUC would treat all cases as if they behaved in the same manner. Figure 1 shows that 
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calculations of point-based AUC are not specific to discounting and that many very different 

arrangements of data can produce an identical measurement of point-based AUC. The 

conceptually neutral stance provided by point-based methods make it possible that AUC may be 

closer to 1.0 (e.g., nearer 100% of maximum) because data are increasing towards the maximum 

as delays increase. When interpreted as a saturated model, this may make some good sense 

because point-based AUC methods can provide a summary of the observed data, but cannot 

predict how future delays are influencing choice behavior (e.g., are the data increasing or 

decreasing). This is because the model here serves to reconstruct the data. 

More recent attempts to address the difficulties encountered when fitting a single model 

across participants have explored a multi-model approach combined with generalized measures 

of discounting. Franck et al. (2015) described a method that used the Bayesian Information 

Criterion (BIC; Schwarz, 1978) to compare, and select from, multiple discounting models. 

Franck and colleagues utilized approximate Bayesian model selection to identify the best 

performing model for an instance of discounting and then measured discounting in a way that 

could be compared regardless of the model used. Using the Effective Delay 50 (ED50), the point 

at which a function arrived at 50% of its initial value, instances of discounting could be 

measured and interpreted similarly regardless of the discounting model it was derived from 

(Yoon & Higgins, 2008). While the discounting model selection procedure is robust and well-

suited to discounting applications, calculations of the ED50 have certain assumptions that must 

be met. First, calculations of ED50 require that a discounting model candidate fits well and that 

this model demonstrates some type of systematic discounting. That is, the function must be 

moving in a downward sloping direction towards 50% of its starting value. Calculations of ED50 

cannot be performed when data are either increasing or characterized by the Noise model. A 
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series characterized by the Noise model is best represented by the intercept alone (e.g., the mean 

of the Y values), which neither ascends or descends; in other words, a straight line. In this 

instance, an ED50 cannot be calculated because that model is not moving in the direction 

towards 50% of its maximum value. Second, the ED50 is potentially limited when certain 

models rapidly reach 50%, or below, the initial value. For example, the quasi-hyperbolic 

(Laibson) model cannot have an ED50 calculated when the beta parameter is 0.5 or below. In 

such a case, where the present-moment bias (beta) is already 50% of a maximum value, the 

ED50 cannot be calculated because the 50% mark has occurred before any delays took place. 

While ED50 cannot be calculated in the above cases, an area-based measurement is still possible 

using the most probable model. While researchers always have the option to use point-based 

AUC, and forego model fitting entirely, the discounting model selection approach can still 

proceed in these cases by using numerical integration to calculate the area beneath a fitted model. 

Similar to how the point-based AUC method calculates area, numerical integration entails 

the calculation and summation of area segments. While point-based AUC is calculated by 

summing the area under pairs of data points, numerical integration calculates the area under a 

fitted model between specific bounds (e.g., first and last delay). Performing numerical 

integration on a fitted discounting model permits the summation of theoretically infinite 

segments--numerical integration is not constrained by the amount of data collected. Through a 

process of calculating and summing a large number of very small and precise segments, the area 

under the model ultimately converges to a measure that captures the area beneath the unique 

shape of the most probable, fitted model. Once area from numerical integration is divided by the 

maximum possible area, the result is a measurement that ranges from 0.0 and 1.0, which is 

consistent with the traditional interpretation using point-based AUC while retaining its 
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interpretive and statistical advantages. In addition to a measure of area, calculations of model-

based AUC are accompanied by a known model and a set of fitted model parameters. A model-

based AUC combines the summary value of an area-based measurement of discounting with the 

predictive power of a known model. The model and parameter(s) provided offer useful, 

statistically desirable information regarding a subject that traditionally would have had to been 

inferred from visually inspecting the data. Within this information, individual model parameters 

speak directly to whether a function is discounting or not--information not afforded when 

calculating area with data points outright. 

Numerically integrating models of discounting offers new opportunities for discounting 

researchers. Among these, a model-based AUC can be calculated using most software already 

used for applying nonlinear curve fitting (R Core Team, 2017). In these cases, there is no 

additional software necessary to either purchase or learn. Second, calculating area from 

discounting models allows researchers to calculate a conceptually-driven AUC from models that 

can be systematically and statistically compared (i.e., through model selection). This is an 

improvement over applying the point-based AUC method outright, as it is very likely that 

instances of individual discounting could be represented by a more robust and parsimonious 

model than the empirical discounting function. Third, the conceptual and empirical bases of 

discounting models are preserved and thus available for further analysis in model-based 

calculations of AUC. Area calculations performed in this manner can still directly reference a 

conceptual model and its individual parameters, error variance, and other goodness-of-fit 

measures. No parameters are added, lost, or modified in this process. Among such benefits, these 

metrics provide the researcher with empirical measures of whether discounting was observed. 

This may be of benefit in instances where the visual analysis of every instance of each 
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participant is particularly taxing (e.g., results from 1000+ participants). Fourth, numerical 

integration substantially extends the capabilities of the discounting model selection approach. 

Area-based calculations enable the discounting model selection approach to continue in cases 

where the ED50 cannot be calculated. This is a substantial extension of the multiple model 

approach to analyzing individual discounting. Numerical integration methods allow discounting 

model selection to capitalize on the flexibility and interpretability provided by area-based 

measurements. That is, this combination allows model selection to proceed in cases where data 

series are particularly challenging to model. 

To evaluate a model-based calculation of AUC, and examine its strengths and limitations, 

analyses with simulated and real data were needed to compare both methods of calculating AUC 

across a range of conditions. This study sought to answer the following questions: (1) are model-

based calculations of AUC, using numerical integration, consistent with point-based calculations 

of AUC when data emerge from various models of discounting, (2) are model-based calculations 

of AUC consistent with point-based calculations of AUC when data are characterized by the 

Noise model and (3) does the discounting model selection using model-based AUC produce 

similar results to point-based AUC when real-world data are used? 

Simulation Study 

METHOD 

Simulated Participants 

Simulation studies were conducted to compare the results of point- and model-based 

AUC. Individual simulations were designed and performed for each of the models included 

within the discounting model selection procedures described in Franck et al. (2015). Individual 

simulations were constructed for the exponential, hyperbolic, quasi-hyperbolic, Myerson 
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hyperboloid and Rachlin hyperboloid models to produce data that emerged from a range of 

underlying models. Individual models and their structure are shown in Table 1. Each simulation 

was programmed to produce 10,000 randomly-generated discounting series. Identical to the 

simulations from Franck et al. (2015), delay points included 1 day, 1 week, 2 weeks, 1 month, 6 

months, 1 year, 5 years, and 25 years. Simulation parameters were derived from parameter 

values and error variance from 111 college students completing a hypothetical monetary delay 

discounting task (Franck et al., 2015). A more complete description of data simulation 

procedures and parameters (e.g., starting parameters, error variance) can be found in Franck et al. 

(2015) and the resources necessary to replicate the present simulations are described in the 

appendix of this work. 

Model Selection Procedures 

Model selection entails a comparison of potential models based on some index of model 

performance (Franck et al., 2015). Following simulations of hypothetical discounting data, 

model selection procedures were performed for each series using the BIC (Schwarz, 1978) and 

subsequent model probabilities (Kass & Raftery, 1995). As indicated in Table 1, five commonly 

used discounting models were included in the model selection procedure and these were selected 

based on the present state of discounting model selection (Franck et al., 2015). A Noise model 

was included as a candidate to model instances where discounting was best characterized by a 

single, straight line (i.e., intercept only). Consistent with model selection procedures in Franck et 

al. (2015), models that could not be optimized were not included in model comparisons and 

selection procedures continued with the remaining models. Models were compared using the 

BIC and the model with the highest model probability was selected for use in subsequent 

analyses. 
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Nonlinear Model Fitting and Numerical Integration 

The R statistical program was used to fit all statistical models and to perform numerical 

integration. The nls package within R was used to fit all discounting models (Bates & Watts, 

1988; R Core Team, 2017). Using the default Gauss-Newton optimizer, maximum iterations 

were fixed to 50, error sum of squares to elicit convergence was set to 10-5, and step sizes were 

set to no less than 2-10. Consistent with Franck et al., (2015), the Laibson β and δ parameters 

were constrained within the range of 0-1 and all other parameters were fitted freely. The Rachlin 

model s parameter was not constrained by default, which was necessary to meet conditions for 

regularity necessary for the model selection approach. The integrate package within R was used 

to perform all numerical integration (Piessens, deDoncker–Kapenga, Uberhuber & Kahaner, 

1983; R Core Team, 2017). The upper and lower bounds were set to the highest and lowest delay 

points, respectively, and the most probable discounting model was set to be the function 

integrated upon. All other settings remained at defaults. 

Point-based AUC Calculation using the Trapezoid Rule 

Point-based AUC calculations were performed as described in Myerson et al. (2001). 

This form of AUC was calculated using the Trapezoid Rule, where individual area segments 

were calculated by averaging adjacent Y-values and multiplying them by the respective 

increment, see Equation 1. The result of this calculation was a rectangular segment 

approximating the area underneath pairs of points. The area of the collective rectangular 

segments was divided by the maximum area possible. The maximum area possible was the 

product of the full domain, or between the first and final delays, and the maximum value of the 

discounted item. The final calculation yielded a ratio of area under data points to maximum area, 

which ranged from 0.0 to 1.0. 
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Equation 1.  
𝑌𝑛+𝑌𝑛+1

2
(𝑋𝑛+1 − 𝑋𝑛) 

Model-based AUC Calculation using Numerical Integration 

Numerical integration is a methodology that allows for calculating the area beneath an 

arbitrary function. In the case of discounting functions, numerical integration allows one to 

determine the area beneath a fitted model over a fixed domain as defined by the first and final 

delay point. The calculation of maximum possible area was identical to that of point-based AUC. 

Model-based AUC was calculated using a modified version of the Discounting Model Selector 

(DMS; Gilroy, Franck & Hantula, in press). This software conducted discounting model 

selection and was modified to apply numerical integration methods rather than calculate the 

ED50. This modified version of the software, and resources to recreate it, are listed in the 

Appendix of this work. Once the area beneath a fitted discounting function was solved for, 

model area was divided by the maximum possible area to calculate a ratio of area under curve to 

maximum area, which ranged from 0.0 to 1.0.  

Model-based AUC Calculation for data characterized by the Noise Model 

In data series characterized by the Noise model, discounting model selection would have 

found that the intercept alone characterized the data better than other, more complicated models 

(e.g., exponential, hyperbolic). As such, the model was simply the intercept extending from the 

first to the final delay point, see Figure 2. In these cases, AUC was calculated as the area beneath 

the intercept between the first and final delay point. While numerical integration could be 

performed upon this line, it was computationally more efficient to simply divide the Y value of 

the intercept by the maximum value of the commodity. Calculated in this way, this measure 

represented a ratio of area beneath the function to total area, yielding a figure that ranged 

between 0.0 and 1.0. 
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RESULTS 

Discounting Model Selection for Simulated Data 

Discounting model selection procedures were applied to all simulated discounting series. 

Consistent with earlier studies on discounting model selection, a range of discounting models 

were found to characterize simulated participants (n=50,000). The exponential (n=8,776; 17.55% 

of series), hyperbolic (n=11,003; 22.01% of series), quasi-hyperbolic (n=11,073; 22.15% of 

series), Myerson-Green Hyperboloid (n=6,158; 12.32% of series) and Rachlin Hyperboloid 

model (n=11,867; 23.74% of series) were characterized by similar proportions of all data series 

overall. Noise models characterized a small percentage of simulated series (n=1,123; 2.25% of 

series). 

Comparing Point-based AUC to Model-based AUC for Discounting Models in Simulation Data 

Point- and model-based AUC calculations were compared within and across the most 

probable discounting model for simulated data. A strong relationship was observed between both 

forms of AUC overall, as illustrated in Figure 3. A Spearman rank order correlation between 

these two measures, across all underlying models, revealed a strong relationship overall (S = 

8.8444e+11, rho = .9575, p < .0001). Correlations between the two measures were strong at the 

individual model level as well. Spearman rank order correlations for individual discounting 

model comparisons were as follows: Hyperbolic (S = 1.0244e+10, rho = .9539, p < .0001), 

Exponential (S = 9.0772e+9, rho = .9194, p < .0001), Beta-Delta (S = 2.5314e+10, rho = .8881, 

p < .0001), Myerson Hyperboloid (S = 1.6759e+8, rho = .9957, p < .0001), and Rachlin 

Hyperboloid models (S = 5.9538e+9, rho = .9786, p < .0001). 
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Comparing Point-based AUC to Model-based AUC for Noise Models in Simulations 

Roughly 2% (n=1,123) of simulated discounting data were characterized by the Noise 

model. These data were analyzed to examine how model-based AUC utilizing a Noise model 

(e.g., straight, horizontal line) related to the point-based AUC method (e.g., linear interpolation 

of data points). A Spearman rank order correlation between both forms of AUC calculations 

indicated a very strong relation in these situations (S = 1.1624e+7, rho = .9507, p < .0001). The 

relationship between these metrics is illustrated in Figure 4. As indicated within marginal 

histograms, series best characterized by the Noise model tended to be series with either little-to-

no (closer to 1.0) or very-high (closer to 0.0) discounting. Instances of discounting between these 

two extremes were more often characterized by one of the more traditional discounting models.  

Comparing Point-based AUC to Model-based AUC in Published Data 

To demonstrate the utility of a discounting model selection approach using numerical 

integration, data were extracted from a published paper and re-analyzed. This served to both 

apply a model-based calculation of AUC to real data as well as review the process of applying 

discounting model selection with numerical integration. All model selection, numerical 

integration, and calculations of point-based AUC were as described earlier in the methods 

section.  

METHOD 

The specific data, methods, analyses and results were as listed and described in 

Takahashi, Masataka, Malaivijinond and Wongsiri (2008). Takashi et al (2008) examined 

potential differences in the rates of discounting between reinforcer types and magnitude. More 

specifically, they evaluated the impact of delays on the subjective value of food (preservable 
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rice) and currency (baht) across high- and low-magnitude conditions. The baht was a currency 

used in Thailand, where the study was conducted. 

Study Participants and Data from Takashi et al (2008) 

Forty-eight students at a local university participated in group-based, hypothetical 

decision-making tasks. Individual participants were assigned to either a high- (n=20) or low-

magnitude (n=28) condition. In each of these conditions, all participants completed hypothetical 

decision-making tasks for food (10 or 100 kg of rice) and currency (200 or 2000 baht). Both the 

high- and low-magnitude tasks were designed to be offer roughly equivalent worth across 

commodities (e.g., 10 kg of rice cost roughly 200 baht). Individual participant responding was 

extracted and analyzed as recorded in Tables 1, a-d of the source material (Takashi et al 2008). 

Study Methods from Takashi et al (2008) 

Participants in all groups completed a checklist-format questionnaire after being read a 

script outlining the discounting task. All instructions were presented in English. Hypothetical 

monetary choice tasks were presented both vocally by an experimenter as well as on written 

media (i.e., paper checklist, blackboard, etc.). The delays included in the assessment were six 

months, one year, five years, ten years, and twenty years. The possible immediate reward values 

were 1%, 2.5%, 5%, 7.4%, 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 

70%, 75%, 80%, 85%, 90%, 92.5%, 95%, 97.5%, and 99% of the maximum value of the 

commodity. One five-trial practice session was conducted in English prior to experimental 

conditions to confirm sufficient understanding of the English language. 

Study Results from Takashi et al (2008) 

Takashi et al (2008) presented analyses using both the hyperbolic discounting model 

(Mazur, 1987) and point-based AUC. They had foregone model-fitting for all participants 
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following observations that a single model was insufficient to adequately characterize all 

instances of participant responding. For the sake of this example, only point-based AUC was 

reviewed and re-analyzed. Consistent with the source paper’s analyses, a repeated measures 

ANOVA was conducted for the point-based AUC observed in the four conditions (reinforcer 

magnitude vs. reinforcer type). Analyses of point-based AUC with extracted data revealed a 

significant main effect for reinforcer type, F = 8.016 (1, 34), p < .01, but not for reinforcer 

magnitude, F = 1.007 (1, 34), p = .33. A significant interaction was observed between reinforcer 

type and magnitude, F = 7.56 (1, 34), p = < .01. All results were identical to that of Takashi et al 

(2008).  

The same statistical comparison was repeated using the results of model-based AUC. 

Consistent with the results of Takashi et al (2008), a significant main effect was observed for 

reinforcer type, F = 7.772 (1, 34), p <.01, but not for reinforcer magnitude, F = 1.014 (1, 34), p = 

.32, using model-based AUC. A significant interaction was also observed between type and 

magnitude, F = 8.686 (1, 34), p = < .01, using this new metric. These results indicate that a 

model-based form of AUC provided nearly identical results to that of point-based AUC. 

While both forms of AUC offered consistent measurements and comparisons, using a 

model-based approach to calculate AUC provided information that would have been unavailable 

using either a single-model approach or applying point-based AUC outright. As indicated in 

Table 2, re-analyses of the Takahashi et al. (2008) participant data revealed that individual 

decision-making was characterized by a range of different models overall. Interestingly, 

discounting model selection revealed that individual patterns of decision-making often varied at 

the individual-level when the type of reinforcers changed. For example, 80.95% (n = 17) and 

60% (n = 9) of participants demonstrated different patterns in discounting between food and 
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currency in the low- and high-magnitude conditions, respectively. Data gleaned from model 

selection suggested that individual discounting processes varied considerably between reinforcer 

types in both lower and higher magnitude conditions, even though a significant effect was not 

observed in the overall AUC between higher and lower magnitude conditions. Additionally, 

model-based AUC and discounting model selection was able to accommodate the two cases 

where discounting data were characterized by the Noise model. If discounting model selection 

would have used the ED50 as the metric of discounting instead, no data could have been 

calculated and these cases would have had to been dropped from any further analysis and 

comparison. 

Beyond knowledge of the model that likely underlies AUC, a model-based AUC 

provided statistical information not provided when calculating point-based AUC outright. 

Principal among these benefits, fitted model parameters spoke to the general direction of the data 

over time. More specifically, these parameters guide the interpretation of AUC by indicating 

whether or not discounting actually took place. Using this approach, calculations of model-based 

AUC for participant number nineteen in the baht condition section of Takahashi et al. (2008) 

revealed that this participant did not actually discount over time. Rather, this individual’s data 

increased as delays grew and this pattern resulted in an AUC deceptively close to 1.0. As 

depicted in Figure 5, AUC in this instance produced a figure that misleadingly suggested slight 

discounting (AUC: 0.766), but represented a savings function. While point-based AUC alone 

offered little to distinguish discounting from savings without visual analysis, the fitting of a 

probable discounting model (Rachlin hyperboloid) and interpretation of model parameters did 

indicate this statistically. The fact that the s parameter was signed negative suggested that the 

function operated in the opposing direction as typically assumed in a discounting function. Using 
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discounting model selection in this manner, a wider range of statistical measures were provided 

to the researcher and assisted in the analysis and interpretation of individual choice behavior. 

CONCLUSIONS 

While numerical integration is a commonly used method in many areas of mathematics, 

its use in the behavioral sciences and in the measurement of decision-making represents a novel 

departure from established area-based methods. This type of calculation significantly extends the 

capabilities of the discounting model selection approach and the present study sought to answer 

the following questions: (1) does model-based AUC derived from a range of discounting models 

correspond with point-based AUC, (2) does model-based AUC derived from the Noise model 

correspond with point-based AUC and (3) does the discounting model selection using model-

based AUC produce similar results to point-based AUC when real-world data are used? Analyses 

of these methods using both simulated and real-world data indicated that a model-based AUC 

using numerical integration produced an area metric that was highly consistent with traditional 

point-based AUC. Additionally, these comparisons suggested that model-based methods were 

equally applicable to both systematic and more variable data series (e.g., Noise model), which 

are often the case for using point-based AUC measure of discounting. 

With respect to the first question, simulation results indicated that model-based AUC, 

derived from numerical application upon a probable discounting function, correlated very 

strongly with the traditional point-based AUC method. This type of relationship is not altogether 

surprising. When viewed as a saturated model of sorts, the empirical discounting function is 

based upon interpolated data that, to some unmeasured degree, resembles a curve. However, 

lacking any residual error variance, it impossible to determine whether a simpler, more 

parsimonious model could simply represent the approximated curve. As such, it is entirely 
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possible that one or more traditional discounting models could fit that data. In contrast, a model-

based AUC using model selection systematically analyzes error variance to determine which 

model most simply, best fits the data. As a result of this, the area under these two very different 

methods ultimately arrives at very similar measurements. While ultimately arriving at a 

relatively similar figure, the model-based approach to AUC provides both the summary value 

afforded by the area measurement and the predictive capabilities of an established model of 

discounting. 

Per the second question, this study examined whether or not numerical integration 

applied to a Noise model (e.g., intercept alone) would relate to point-based AUC in cases where 

a data series was best characterized by a Noise model. This was a question of considerable 

interest, as calculations of point-based AUC are traditionally enlisted in situations where data are 

not easily modeled. In instances when the discounting model selection identified the Noise 

model as the most probable, point-based AUC was calculated as typical and model-based AUC 

was calculated as the area beneath a single, horizontal line of fit. While remarkably distinct, both 

AUC methods produced similar results overall. Statistically, this makes good sense from the 

perspective of discounting model selection. To have found the Noise model to be most probable, 

the intercept alone would have to have been found to represent that data better than more 

complicated alternatives. This is consistent with the notion that the empirical discounting 

function could be represented by some alternative, simpler model. This was observed in both 

simulated and extracted study data. In the case of Takahashi et al. (2008) specifically, 

participants numbered twenty-four (point-based AUC: 0.11; model-based AUC: 0.11; Lower 

magnitude food condition) and fifty (point-based AUC: 0.14; model-based AUC: 0.15; Higher 

magnitude currency condition) demonstrated responding that was best characterized by the Noise 
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model. In these cases, traditionally challenging arrangements of data arrived at a similar figure 

and both individual- and group-level analyses yielded the same results with both forms of AUC. 

For the third and final research question, results showed that model-based AUC can be 

applied to real-world data. Re-analyses of an existing data set indicated that model-based AUC 

provides area estimates of discounting that were consistent with point-based AUC methods, but 

offered information not available through a conceptually-neutral approach. Adopting a 

conceptually-driven approach to AUC offers significant potential benefits to applied delay 

discounting researchers. First, having parameters from a probable discounting model offers an 

empirical means to enhance visual analysis of individual responding. That is, parameters of a 

fitted model indicate whether discounting took place. This may be of particular interest to 

researchers with larger sample sizes, when the number of individual series to analyze visually 

becomes particularly burdensome. For example, Jarmolowicz et al (2012) reported a delay 

discounting study conducted on MTurk with over 900 participants. Such larger sample sizes may 

become more common as an oft-invoked solution to the replication and reproducibility crisis in 

behavioral sciences (Open Science Collaboration, 2015), economics (Chang & Li, 2015) and 

medicine (Ioannidis, 2005) is to conduct studies with much larger sample sizes (Etz & 

Vandekerckhove, 2016; Francis, 2013). 

Second, a conceptually-driven approach to AUC speaks to both how and how much 

discounting took place. While point-based AUC offers a means to summarize how much 

discounting was observed (if visually confirmed to show discounting), the conceptually-neutral 

basis for it prevents any further analysis of how discounting took place over time. This is 

consistent with the interpretation that point-based AUC as a saturated model having good 

summary value but little predictive power. Takahashi et al. (2008) provides a good example of 
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this limitation. Using point-based AUC, they found a main effect for reinforcer type for the 

overall amount of discounting observed (e.g., how much) but were not able to describe how 

individual discounting individual might have been different for participants across conditions. It 

is entirely plausible (and likely) that individuals might have varied in both their degree of 

discounting and their process of discounting when reinforcers types and magnitudes changed. 

Point-based methods do not permit further analysis, or prediction, of how shorter and more 

delayed conditions affected an individual’s choices. In contrast, model-based AUC methods 

provide information regarding an individual’s rate of change over time and can account for the 

individual slope and path of the individuals fitted discounting function. In this manner, an 

individual’s steeper discounting nearer the present, and more gradual discounting in the future, is 

retained for further analysis and interpretation. Maintaining a conceptually-driven approach 

throughout assessments of individual discounting could highlight additional factors that underlie 

differences in individual discounting. 

The results of this study overall support the use of numerical integration within the 

discounting model selection approach because it can be adapted to offer both the strong 

conceptual support for models of discounting and the flexibility offered by an area-based 

interpretation of discounting. While these findings indicated that area-based calculations of 

discounting expand upon the present capabilities of discounting model selection, we do not mean 

to discourage the use of the ED50 metric. Rather, numerical integration should be seen as an 

additional, alternative means of measuring individual instances of discounting in cases where 

responding may be more challenging to model. This novel approach grants new benefits to 

researchers analyzing and comparing individual discounting. In a field marred by debate over the 

specific models and metrics used, discounting model selection may serve to provide a 
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statistically-informed (but neutral) process for modeling discounting data with the opportunity to 

interpret responding in several ways (e.g., individual models and parameters, ED50, model-based 

AUC). A shared set of methods and procedures may assist in integrating lines of research that 

have historically reported only a single type of metric. Also, given that numerical integration is 

largely a transformation of some model into a proportion of area, this approach supports research 

at the individual model level as well.  

In summation, numerical integration serves as a novel and robust methodology for 

measuring and analyzing individual discounting. All together, these methods combine 

approximate Bayesian model selection, robust mathematical procedures, the general 

interpretability of area metrics, and the rich conceptual support afforded by established models of 

discounting. The combination of these methods simultaneously permits research and analysis of 

individual discounting on multiple levels, providing researchers the option to evaluate 

responding at the model-level and beyond, together rather than apart.  

LIMITATIONS 

While results from computer simulation and re-analyses of existing data were 

encouraging, numerical integration methods are a substantial departure from the traditional 

methods for analyzing discounting phenomena using area. Additional experimental and clinical 

evaluation is necessary to better understand how a model-based form of AUC, which references 

the discounting model itself, may behave when different patterns of discounting are observed. 

This approach could potentially yield even more robust measures of discounting in a discounting 

model selection approach, especially in cases when models are unable to produce a calculation of 

ED50. However, additional research is necessary to real-world research of these methods would 

be necessary to do so.  
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APPENDIX 

The source code necessary to compile and run all simulations are publicly shared on the 

corresponding author’s public Git, located at https://github.com/miyamot0. All simulations were 

conducted using the R programming language. The R scripts necessary to conduct and re-create 

all simulations can be found on Github in the repository named “Discounting Model Selector 

Simulations.” The raw data used in the study is publicly shared in the same location.  

The software used to conduct all analyses in this work is freely available at 

https://github.com/miyamot0/ModelSelectorQt in the source code form. It is a cross-platform, 

open-sourced project (General Public License-Version 3.0), built on earlier behavioral decision-

making tools. It will conduct discounting model selection and apply either the ED50 or model-

based AUC, at the user’s discretion. It can be run as a script for the R programming language or 

as a cross-platform Graphical User Interface (GUI). Runnable binaries can be compiled for the 

Windows, Linux, and Apple computing environments.  
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Table 1 

Discounting Model Selection Candidates 

 

Model Source Model Structure 

Exponential  Samuelson (1937) 𝐴𝑒−𝑘𝑥 

Hyperbolic  Mazur (1987) 
𝐴

1 +  𝑘𝑥
 

Quasi-Hyperbolic  Laibson (1997) 𝑏𝑑𝑒−𝑘𝑥 

Myerson & Green Hyperboloid  Myerson & Green (1995) 
𝐴

(1 +  𝑘𝑥)𝑠
 

Rachlin Hyperboloid  Rachlin (2006) 
𝐴

(1 +  𝑘𝑥𝑠)
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Table 2 

 

Model Characterizations in Takahashi, Masataka, Malaivijinond and Wongsiri (2008) 

 Low Magnitude High Magnitude 

Model Food  Currency Food  Currency  

Noise 0% (n=0) 4.76% (n=1) 0% (n=0) 6.67% (n=1) 

Mazur 9.52% (n=2) 9.52% (n=2) 6.67% (n=1) 0% (n=0) 

Exponential 0% (n=0) 4.76% (n=1) 0% (n=0) 6.67% (n=1) 

BD 42.85% (n=9) 28.57% (n=6) 40% (n=6) 40% (n=6) 

Green Myerson 19.04% (n=4) 38.09% (n=8) 26.67% (n=4) 20% (n=3) 

Rachlin 28.57% (n=6) 14.28% (n=3) 26.67% (n=4) 26.67% (n=4) 
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Figure 1. Equivalent point-based AUC for discounting, noise and growth functions 
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Figure 2. Comparison of point- and model-based AUC for data characterized with Noise Models  
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Figure 3. Area of Point AUC versus Most Probable Model AUC 
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Figure 4. Comparison of Model-based AUC and Point-based AUC for Noise Models 
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Figure 5. Participant number nineteen from Takahashi et al. (2008) 
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Figure Captions 

Figure 1. The three plots displayed have the exact area beneath the interpolated data points, 

despite one being a decay function, one being a noise function and the final an interest function. 

Figure 2. The upper plot in this figure illustrates the calculation of area for the empirical 

discounting function and the lower plot illustrates how area is calculated when a data series is 

best characterized by the Noise model. 

Figure 3. The six plots within this figure illustrate the correlations between both types of AUC 

methods, with individual plots representing the results of both methods when a certain model 

was found to best characterize the data. 

Figure 4. This plot is an enlarged and enhanced version of the Noise model plot in Figure 3. The 

Noise model is displayed here along with marginal histograms, which indicate the distribution of 

results for each metrics on the opposing axes.  

Figure 5. This figure illustrates a positively increasing function from Takahashi, Masataka, 

Malaivijinond and Wongsiri (2008). This series yields an area-based metric, despite not 

characterizing discounting. 
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