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ABSTRACT

Research applying the behavioral economic demand framework is increasingly conducted across
disciplines, as is research on improving the mathematical accuracy of demand metrics. At present,
a variety of methods have been introduced to solve for the point of unit elasticity, or PMAX, in the
Exponential model of demand; however, most of these methods vary in their potential for error due to
being empirical approximations. Various methods for determining PMAX are presented here and a novel
exact solution for PMAX in the Exponential model of demand is introduced. This solution provides an
exact calculation of PMAX using the omega function, as algebraic solutions are not possible. This novel
approach is introduced, discussed, and systematically compared to earlier methods for determining
PMAX using computer simulations. Systematic comparison indicated that this new approach, an exact
analytic solution for PMAX, provides results that are identical to computationally-intensive PMAX
methods that directly evaluate the slope of the demand function. The exact analytic PMAX approach is
reviewed, its calculations explained, and an easy-to-use web tool is provided to assist researchers in
easily performing this calculation of PMAX. Implications for reducing potential sources of error are
reviewed and future directions are also discussed.
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1 Introduction

Classical economic theory employs demand analyses to understand market influence on consumers’ willingness to
pay for particular goods and services. Central to demand theory is the notion of demand elasticity, which is defined
as the “ratio of the relative change in a dependent to the relative change in an independent variable” (Watson and
Holman, 1977, p. 34). Behavioral economists have translated this concept to the consideration of reinforcement
operations on operant responding. Operant behavioral economics, namely the methods specific to studying operant
demand, provide a framework for quantifying response-reinforcer relationships under some type of constraint (number
of responses required per unit of reinforcer, delay to reinforcement, effort associated with responding for one unit of
reinforcement, etc.; e.g., Hursh (1980, 1984); Kagel and Winkler (1972); Rachlin et al. (1976). Demand elasticity in
operant psychology may thereby be used to provide a quantification of a reinforcer’s hedonic or motivational value.

The relationship between the consumption of a reinforcer and the requirements necessary to produce them is complex,
though it has been effectively modeled in several ways (Hursh et al., 1989; Hursh and Silberberg, 2008; Koffarnus et al.,
2015). Regardless of the specific model used to quantify the demand for reinforcers, the operant demand approach
(hereafter considered synonymous with the simple term, “demand”) has been particularly useful in the context of
various willingness-to-pay tasks – particularly, purchase tasks (Roma et al., 2017). In purchase tasks, the demand for
substances or goods such as alcohol (Gentile et al., 2012; Murphy and MacKillop, 2006), nicotine (MacKillop et al.,
2008; MacKillop and Tidey, 2011), or marijuana (Aston et al., 2015; Collins et al., 2014) is assessed at various financial
costs. In these real or hypothetical situations, the monetary price to consume a reinforcer is systematically varied, and
inferences are drawn based on the degree to which participants will defend their baseline levels of consumption as
prices increase (Hursh, 1980, 1984).

Beyond characterizing abuse liability for drugs and other addictive substances, the operant demand framework has
also been applied to other areas of choice and decision-making, such as food intake and dietary choices (Epstein et al.,
2018; Epstein and Saelens, 2000; Epstein et al., 1991; Saelens and Epstein, 1996), use of indoor tanning services (Reed
et al., 2016), and general purchasing behavior (Foxall et al., 2007, 2010). Additionally, more recent work has also
extended this methodology to topics such as organizational behavior management e.g., workforce attrition and incentives
(Henley et al., 2016a,b), “green” consumerism (Kaplan et al., 2018b), and informing interventions for individuals with
developmental and/or intellectual disabilities (Gilroy et al., 2018; Reed et al., 2015, 2009). On a macro level, this
framework has also extended to the population level, providing opportunities to develop empirically-supported public
policy (Guthrie, 2017; Hursh, 1991; Hursh and Roma, 2013; MacKillop et al., 2012; Reed et al., 2016).

1.1 Demand Curve Analyses

Current methods for quantifying the strength, or potency, of a reinforcer represent this quality as a curve, whereby
the overall consumption of a reinforcer (Q) slopes downward as a nonlinear function of increasing cost (P) (Hursh,
1980, 1984). Prior to representing reinforcer efficacy in this way, earlier methods compared the potency of reinforcers
based on traditional measures of relative reinforcer efficacy (Johnson and Bickel, 2006). For example, the potency of a
reinforcer might be compared to another based on some aspect of responding under constraint, which might include
peak levels of responding (i.e., highest rates of responding), reinforcer breakpoint (i.e., the leanest effective schedule of
reinforcement), or some other aspect of responding, such as preference (Katz, 1990). These earlier methods, which
compare reinforcers based on one aspect of the response-reinforcer relationship, have since been superseded by demand
curves, which represent reinforcer efficacy as a multidimensional construct with metrics arising from the curve (Bickel
and Madden, 1999; Bickel et al., 2000; Johnson and Bickel, 2006).
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Figure 1: These figures illustrate unit elasticity (PMAX) calculated in Log-Log space.

Representing reinforcer efficacy as a curve offers several advantages over earlier approaches (Johnson and Bickel, 2006;
Reed et al., 2013). For example, this approach serves to integrate various aspects of the response-reinforcer relationship
in a single, unified approach. Further, modeling the demand in this way reveals additional qualities of reinforcers.
Among these, the demand curve permits an analysis of the elasticity of demand for a reinforcer (Hursh and Silberberg,
2008; Hursh, 2014; Lea, 1978; Lea and Roper, 1977). Briefly, the demand for reinforcers is differentially influenced by
constraints such as price and time. Changes in consumption as a function of changes in the cost-benefit ratio are referred
to as the elasticity of demand and indexes the degree to which consumption is sensitive to these increasing costs. That is,
there are regions of the demand curve where consumption is relatively unaffected by increases in costs and others where
consumption is substantially affected by increases in cost (see the left panel of Figure 1). These regions are termed the
inelastic and elastic ranges of the demand curve, respectively, and prices associated with each range exert differential
effects on consumption. Demarcating these two regions of the demand curve is the point of unit elasticity or PMAX, a
location upon the demand curve whereby one log-unit increase in price is accompanied by one log-unit decrease in
levels of predicted consumption (i.e., -1 unit consumption / 1 unit price = -1 unit change). This ratio (i.e., slope) is near
zero at low prices and grows increasingly negative as larger changes in consumption take place. An example of this
slope and the calculations involved are illustrated in the right panel of Figure 1. In this example, unit prices less than
PMAX are associated with smaller changes in levels of consumption when prices increase (i.e., −1 < f ′(x) < 0) and
costs greater than PMAX are associated with larger changes in consumption when prices increase (i.e., f ′(x) < −1) .

1.2 Approximations of Unit Elasticity

Concerning the most often used models of operant demand, the Exponential Hursh and Silberberg (2008) and Exponen-
tiated (Koffarnus et al., 2015) models, methods for determining PMAX have varied in several ways. Before discussing
these ways, we make note that calculations of the model slope are ultimately the same for both the Exponential and
Exponentiated models. This is because elasticity is assessed in Log-Log space and scaling the Exponentiated model of
demand into Log space ultimately results in the same demand projected by the Exponential model. As such, we will be
referencing the Exponential model primarily throughout this work, and the structure of this model takes the following
form:

log10Q = log10Q0 + k(e−αQ0x − 1) (1)

As first noted by the model authors (Hursh and Roma, 2013; Hursh and Silberberg, 2008), an arithmetic solution for
PMAX is not available. The terms of this model’s first order derivative prohibit an arithmetical solution for the price (i.e.,
x) at a slope of -1 because the term for price (i.e., x) appears twice in the derivative—both inside and outside of the
exponent. As a workaround to this issue, alternative approaches for calculating (or approximating) PMAX have been
introduced. First, PMAX can be approximated empirically by “observing” a point of maximum responding (i.e., OMAX).
In this approach, the empirical OMAX represents the highest total responding across the prices directly evaluated. The
empirical OMAX can be used to approximate an “observed” PMAX for the empirical demand curve, since the two metrics
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are related (Greenwald and Hursh, 2006). This approach is driven by the available data alone and is not specific to any
model of demand. This Observed PMAX uses the data alone to determine the price associated with the highest levels
of responding before decreasing. Second, there are mathematical formulas that provide an approximation of PMAX
using the fitted model parameters (Hursh, 2014; Hursh and Roma, 2013). The Approximate PMAX formulas produce
values that are highly correlated with the true PMAX that would be found if directly evaluating the slope of the demand
curve. Lastly, a true PMAX can be determined using specialized software wherein a program systematically searches
for the price where the first order derivative is equal to -1 (Hursh and Roma, 2013). In this approach, referred to here
as Derivative PMAX, an algorithm is used to iteratively search for PMAX using a fitted demand function. While several
methods are available for determining PMAX, there are inevitable variations in the values resulting from each of these
methods and this variability is inherently due to the difficulties solving for an exact slope of -1. Any variations in PMAX
values presents challenges for comparing values across studies and for the accuracy of making population-level (e.g.,
public policy, organizational policies) recommendations.

1.3 An Exact Solution for Unit Elasticity

While there is no arithmetic solution for PMAX, there are alternatives where a slope of -1 can be determined without
the need for specialized computer programs. For example, the Lambert W (i.e., omega) function can be used with
the first order derivative of the Exponential model of demand to solve for PMAX. Briefly, Lambert W allows for the
solving of x when a function takes the form of y = xex. This is desirable in the case of the first order derivative of the
Exponential model of demand because this applies to the x terms that exist inside and outside of the exponent. Using
the W function, this simple example then takes the form of x =W (y). As such, the same logic may be applied to the
first order derivative for PMAX.

The purpose of this study was to evaluate the accuracy and reliability of an Exact solution for PMAX in the Exponential
model of demand—hereafter referred to as Analytic PMAX. To evaluate this novel approach, computer simulations were
constructed to generate a range of hypothetical demand curves and facilitate a comparison of the various methods
for calculating PMAX. Specifically, this study asked the following questions: 1) To what degree do the Observed,
Approximate, Derivative, and Analytic methods of calculating PMAX correspond with one another and 2) does the
Analytic method of calculating PMAX provide results consistent with the Derivative, or exact, PMAX from which it was
derived.

2 Method

2.1 Simulated Data Series

A total of 1,000 simulated consumption series were generated from the results of an earlier peer-reviewed study on
decision-making (Kaplan and Reed, 2018) and all simulations were conducted using the R statistical program (Team,
2017). Participants in Kaplan and Reed (2018) were recruited using the Amazon Mechanical Turk (www.mturk.com)
platform to complete a hypothetical Alcohol Purchase Task (Kaplan et al., 2018a, APT). Although the purpose of the
source study was to investigate the influence of “happy hour” specials on self-reported alcohol purchases, only data
from the standard APT were used as a basis for computer simulation. The following prices were included in the APT:
$0.00 (free), $0.25, $0.50, $1.00, $1.50, $2.00, $2.50, $3.00, $4.00, $5.00, $6.00, $7.00, $8.00, $9.00, $10.00, $15.00,
and $20.00. Simulated consumption at each price point was constructed using means and standard deviations in overall
responding at that respective price point. Simulated consumption series that met criteria for systematic responding
(Stein et al., 2015) and R2 values greater than 0.8 were included in the simulations used to compare unit elasticity
methods. A complete description of the computer simulation, as well as the source code necessary to reproduce the data
and analyses, is provided in the Appendix.

2.2 Nonlinear Model Fitting

Demand curve analyses were performed using beezdemand R package (Kaplan et al., 2019), a peer-reviewed package
that features various modeling methods specific to operant demand. Individual Q0 and α values were fitted using
FitCurves at default settings for the Exponential model of demand. Optimization in beezdemand was performed using
the Gauss-Newton optimizer included in the default nonlinear curve-fitting method (nls) in the R program (Team,
2017). Scaling constant k was determined separately for each simulated series by subtracting the minimum level of
consumption from the maximum level of consumption, each in log10 units, and adding a value of 0.5. A value of 0.5
was added to this range to minimize risks associated with using a k value that does not reflect the full range of observed
consumption values (Gentile et al., 2012; Kaplan et al., 2018a).
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2.3 Calculations of Unit Elasticity

A total of four methods for determining PMAX were evaluated using simulated participant responding. Each method
was evaluated using the Exponential Model of demand, and all calculations were performed using the R statistical
program (Team, 2017). All materials used to simulate and perform these analyses have been open sourced, and details
for acquiring them are provided in the Appendix of this work. Each method included in this evaluation is listed and
explained below.

2.3.1 Observed PMAX

As an alternative to evaluating the slope of a fitted model, or numerically approximating it, an “observed” PMAX can be
inferred from the highest levels of observed responding, the empirical OMAX (Greenwald and Hursh, 2006). As PMAX
is related to OMAX, the empirical OMAX (i.e., based solely on observed data) can be assumed to represent the ordinate
of unit elasticity while PMAX would be represented by the abscissa (i.e., price). In this way, the Observed PMAX infers
model slope without model fitting by using the location of the empirical OMAX on the x-axis (i.e., price). Numerically,
the total levels of responding are calculated at each price point multiplying levels of consumption by the corresponding
unit price. This provides a series of values that reflect the maximum levels of responding at each price point. From these
values, the unit price associated with the highest levels of responding is considered to represent the Observed PMAX.

2.3.2 Approximate PMAX

First introduced along with the Exponential model demand (Hursh and Silberberg, 2008), and later revised (Hursh,
2014), the unit price where a demand curve reaches unit elasticity can be approximated numerically using fitted model
parameters. This calculation is not derived from the slope, per se, though it results in a value that closely approximates
the true PMAX. The latest form of Approximate PMAX is calculated as listed below:

PMAX =
1

Q0αk1.5
(0.083k + 0.65) (2)

Limitations of this approach have been noted by model authors, namely that error varies significantly with respect
to the size of scaling parameter k. However, despite some limitations, this calculation has been found to be a good
approximation for many combinations of fitted demand parameters (Hursh, 2014; Hursh and Roma, 2013).

2.3.3 Derivative PMAX

In contrast to numerical approximates, the slope of the Exponential demand curve can be iteratively evaluated using its
first order derivative and specialized computer programming. The results of the approach have been previously referred
to as a true or Exact PMAX (Hursh and Roma, 2013), as results are determined using a computationally-exhaustive
process that directly evaluates model slope at various unit prices until the first order derivative equals -1. The first order
derivative, as provided by Hursh and Silberberg (2008), takes the following form:

5
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Figure 2: This figure illustrates the slope of the Exponential model of demand and how a loss function can represent a
slope value of -1 as a zero point, which can then be minimized to determine Exact PMAX at a value of 0.

f ′(x) = ln10k ∗ (−αQ0xe
−αQ0x) (3)

While not required, this method can be adapted into a more easily optimized loss function by adding a constant of 1 and
taking the absolute value of the result. A visual comparison of these two objective functions is provided in Figure 2. In
effect, this modification represents PMAX as a zero value when the slope of the demand function is -1 (i.e., −1 + 1 = 0).
Further, taking the absolute value produces a ‘V’-shaped function wherein the lowest point in this function represents
PMAX. This form improves the speed and simplicity of an optimization routine, which iteratively searches for the price
wherein the loss function is at its minimum. This loss function was used along with the default minimization method in
R, optim, using a port of the Broyden–Fletcher–Goldfarb–Shanno algorithm (Nash, 2018).

2.3.4 Analytic PMAX

As an alternative to empirical, approximate, and iterative computer methods, PMAX can be calculated analytically
using the W function. Simply put, the terms of the first order derivative provided by (Hursh and Roma, 2013) can be
rearranged (where α, Q0, and constant k are known) so that unit price can be solved at a slope value of -1. This solution
is possible algebraically given that the x term appears inside and outside of the exponent, as previously noted by the
model authors (Hursh and Silberberg, 2008). However, this challenge can be addressed using the W function and one
can construct the form required to use the W function (i.e., y = xex) by rearranging several terms, as follows:

y = ln10k ∗ (−αQ0xe
−αQ0x)

−1 = ln10k ∗ ()
−1
ln10k

= − αQ0xe
−αQ0x

(4)

In the equations shown above, the necessary form to use with the W function can be prepared so that a solution for a
slope of -1 is possible. The final solution for PMAX using the W function is as follows:

PMAX =
−W0(−1/ln10k)

αQ0
(5)

While well-suited to this application, it warrants noting that the Lambert function is complex and multiple branches
and solutions can exist (i.e., real and imaginary). However, for our purposes, we will use the primary branch of this

6
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Table 1: Distribution of Unit Elasticity Estimates

Overall Distribution (n = 1,000)*

Measure 0%ile 25%ile 50%ile 75%ile 100%ile
Approximate 2.471 4.432 5.274 6.213 10.972
Derivative 2.457 4.469 5.345 6.397 12.204
Observed 1.5 50 6 8 20
Analytic 2.457 4.469 5.345 6.397 12.204

Series with R2 > .9 (n = 100)**

Measure 0%ile 25%ile 50%ile 75%ile 100%ile
Approximate 3.417 4.423 5.270 6.092 8.291
Derivative 3.394 4.437 5.337 6.177 9.514
Observed 2.5 5.0 6.5 8.0 20.0
Analytic 3.394 4.437 5.337 6.177 9.514

*Overall R2 for all series (M = 0.850, SD = 0.034)
**Series with R2 of .9 or greater (M = 0.917, SD = 0.017)

function, as denoted by W0. This branch has both real and imaginary solutions and this method of solving for PMAX is
possible so long as the value used in W0 exists within the following range:

−e−1 < −1
ln10k

< 0 (6)

Put simply, this approach results in an exact calculation of PMAX provided that the k used to fit the model exists above a
certain lower limit. In this approach, especially small ks would push the value supplied to W0 outside of the range
specified above and into a region where no real solutions exist. Solving for this absolute lower limit, an Analytic PMAX
can be calculated in all cases where constant k that exists above a lower limit of 1.180535 and the exact determination
of this value is provided below:

e

ln10
< k <∞

1.180535 < k <∞
(7)

Given that this novel approach is an exact solution for the Derivative approach, the Analytic method should provide
results that identical to the Derivative method without the need for specialized computer programming. In contrast,
Analytic PMAX may be performed using scientific calculators or customized spreadsheet software. The specific methods
used to perform the W function in this study were derived from the GNU Scientific Library, an open-source library
of mathematical methods (Gough, 2009), and the specific methods for performing these calculations can be found by
referring to the Appendix.

2.3.5 Data Analysis Plan

The methods described above were systematically compared to evaluate the accuracy, reliability, and correspondence
between calculations of unit elasticity. Each of the individual unit elasticity calculations described above was performed
for each of the 1,000 simulated series and correspondence was assessed using Pearson correlations and scatterplots.
Scatterplot comparisons were constructed to illustrate the correspondence between measures and correlations were
calculated overall as well as with select, well-fitting models (R2 > .9).

3 Results

The distribution of results from each method for calculating PMAX calculation is illustrated in Figure 3 and described
in Table 1. The results of simulated comparisons revealed that all approaches for determining PMAX were correlated
with one another though to varying degrees. The distribution of results for each method is described in Table 2 and
displayed as scatter plots in Figure 4. Across degrees of model fit, the Observed PMAX approach consistently provided
more widely distributed values than the other approaches, and these ranges are described in Table 1. This approach
reliably produced results that ranged much lower and much higher than other methods, see Figure 3.

7



RUNNING HEAD: ANALYTIC PMAX 8

Table 2: Correlation matrix of PMAX methods

Overall Distribution (n = 1,000)*

Measure Approximate Derivative Observed Analytic
Approximate 1 0.993 0.291 0.993
Derivative — 1 0.283 1
Observed — — 1 0.283
Analytic — — — 1

Series with R2 > .9 (n = 100)**

Measure Approximate Derivative Observed Analytic
Approximate 1 0.994 0.429 0.994
Derivative — 1 0.421 1
Observed — — 1 0.421
Analytic — — — 1

Consistent with the shared mathematical basis for the Derivative and Analytic approaches, the results from both
approaches were perfectly correlated (r = 1). Similarly, the Approximate method provided results that were highly
correlated with both the Derivative and Analytic methods (rs = 0.993). In contrast, the Observed approach provided
results that were not as strongly correlated overall with the Approximate (r = 0.291), Derivative (r = 0.283), or Analytic
PMAX (r = 0.283). The results provided by the Observed method were more highly correlated with the Approximate (r
= 0.428), Derivative (r = 0.421), or Analytic PMAX (r = 0.421). These relationships are more thoroughly described in
Table 2 and illustrated in Figure 4.

Figure 3: This figure depicts the range of values provided by each calculation for simulated participants.

8
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Figure 4: This figure illustrates the relationship between Approximate, Derivative, and Analytic PMAX.

4 Discussion

The results from applied behavioral economic studies of demand are increasingly used as evidence to support various
initiatives, such as public policy (Hursh and Roma, 2013). However, the presence of varying approaches for calculating
PMAX naturally introduces some degree of error when determining prices that exist in the inelastic and elastic ranges.
This is an area in need of precision and reliability, as both clinical and policy decisions may be directly or indirectly
informed by the elasticity of demand for some good (e.g., nicotine, alcohol) or reinforcer (e.g., behavior functions,
incentives). Precision is paramount here, as even small levels of variability could result in negative effects for clinical
applications (e.g., poorer treatment outcomes), organizational-level decisions (e.g., employee attrition, ineffective
incentive systems), and policy-level decisions alike (e.g., ineffective policy, limited replicability, poor use of taxpayer
funding). Given that there is a need to precisely and reliably determine PMAX, this report was designed to answer
the following questions: 1) To what degrees do the Observed, Approximate, Derivative, and Analytic methods for
calculating PMAX correspond with one another; and 2) To what degree does the Analytic method correspond with the
Derivative method of calculating PMAX? Based on results from this study, all methods for calculating of PMAX appear to
be correlated with one another, though to varying degrees. Further, the Derivative and Analytic methods for calculating
PMAX appear to be perfectly correlated and this 1:1 match is expected given the mathematical basis from which the
Analytic method was derived.

While providing identical results, the Analytic PMAX method offers several advantages over the computationally-
intensive Derivative method. First, the Analytic method is computationally much simpler and can be performed by
researchers without programming skills. For example, this method can be accommodated in customized spreadsheet
software or even on simple websites. As an example of the simplicity, the Analytic method has been adapted for use
in a web-based calculator hosted by the first author and a link to this tool is provided in the Appendix. In this way,
researchers without programming skills can easily access a method for calculating an exact form of PMAX. Second,
improving the accessibility of this newer and exact form of PMAX (relative to Derivative method) serves to minimize,
if not completely eliminate, the inherent variability introduced when relying on Approximated PMAX values. That is,
researchers may calculate the Analytic PMAX just as easily as they would calculate an Approximate PMAX, requiring
only the Q0, α, and k values. Simplicity aside, this approach effectively eliminates the error associated with relying on
empirical or approximate calculations of PMAX. The variability observed in these approaches is indicated in Table 2
and both empirical and approximate methods contribute to error in varying degrees. In contrast, the Analytic approach
consistently resulted in PMAX values that were identical to the Derivative, or exact, PMAX.

4.1 Limitations

While the methods introduced here provide one means of reducing sources of error in assessing elasticity, it warrants
noting that the manner of calculating PMAX is only one of several sources of variability. For example, the nature of
purchase tasks and how consumption data are collected naturally influence the analyses that follow. In such tasks,
factors such as the range of prices sampled, the step sizes between these prices, and characteristics of individual prices
(e.g., left-digit effects) can each affect analyses of demand. Even further, these novel methods are only an improvement
insofar as the Exponential model of demand effectively represents the data being modeled.

9
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While the results from computer simulation are encouraging and support the Analytic approach as a “drop-in” re-
placement for exact (i.e., Derivative) PMAX methods, additional replication with real-world data is necessary and
this is necessary for several reasons. First, additional study is necessary to understand the relative benefits of this
novel approach over other methods for evaluating elasticity. For example, the differences between Approximate and
Derivative/Analytic approaches may be so minor that any potential error would affect neither the inferences drawn nor
results from statistical comparisons between groups. As such, in certain cases the Approximate approach may introduce
such low levels of error that it essentially does not impact subsequent analyses. Second, further study is necessary to
determine how the limits imposed on k values in this newer method would impact real-world use. The issue of a hard
lower limit may ultimately be a non-issue, as it is more often suggested to err on the side of larger k values by adding a
small constant, i.e. 0.5; (Kaplan et al., 2018a). and because k values less than 1 would suggestive that consumption did
not change even one log10 unit (i.e., a slope of -1 was not even observed). To this effect, further research on how to
most effectively construct parameter k is needed and the limits imposed by this method (i.e., W0 and −e−1) may be
prudent as an absolute lower limit. However, this is an empirical question to be asked along with future replication with
both real and simulated usage.

10
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5 Appendix

All elements of this report are provided under the GNU General Public License, Version 3.0, by the first author.
The source code necessary to generate these simulations as well as perform each of PMAX calculations is pro-
vided on the corresponding author’s Github account in the repository named PMAXEvaluation. Unless stated oth-
erwise, all source code was written and executed within the R statistical program. These resources can be found
at https://www.github.com/miyamot0/PmaxEvaluation. Additionally, a web-based tool has been developed to sup-
port the use of Analytic PMAX and requires only the fitted model parameters. This tool is based on the GNU Sci-
entific Library, accurate with study methods to the eighth decimal place, and provided at the following location:
http://www.smallnstats.com/index.php?page=PMAX.
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