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Abstract 1 

 This brief report provides an account of varying interpretations of elasticity (𝜂) in the 2 

operant demand framework. General references to “demand elasticity” have existed since the 3 

Exponential model of operant demand was proposed by Hursh and Silberberg (2008). This term 4 

has been used interchangeably with Essential Value (EV), PMAX, and the rate of change constant 5 

𝛼. This report provides an in-depth account of 𝜂 and the various ways in which this metric has 6 

been used to interpret fitted demand functions. A review of relevant mathematic terms, 7 

operations associated with differentiating parameters, and worked solutions for 𝜂 are provided 8 

for linear and nonlinear demand functions. The relations between 𝜂 and EV, PMAX, and 𝛼 are 9 

described and explained in terms of their mathematical bases and recommendations are provided 10 

regarding their individual interpretation. This report concludes with recommendations for 11 

providing additional mathematical detail in published works and emphasizing a consistent use of 12 

terms when describing aspects of operant demand.  13 
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Introduction 1 

The operant demand framework is increasingly used to evaluate relationships between 2 

reinforcers and the factors associated with their consumption (González‐Roz, Jackson, Murphy, 3 

Rohsenow, & MacKillop, 2019; Hursh, 2000; Hursh & Roma, 2016; Kagel & Battalio, 1980; 4 

Strickland, Campbell, Lile, & Stoops, 2019; Tidey, Cassidy, Miller, & Smith, 2016; Zvorsky et 5 

al., 2019). Although the economic concept of demand has long existed within mainstream 6 

behavioral economics, the operant demand framework reviewed here is specific to an 7 

ecologically-based perspective regarding human and nonhuman behavior, i.e. reinforcer 8 

pathology rather than cognitive biases (Bickel, Jarmolowicz, Mueller, & Gatchalian, 2011). This 9 

approach and perspective have been applied broadly, with established utility in indexing 10 

substance abuse and misuse (Kaplan, Foster, et al., 2018; MacKillop, Goldenson, Kirkpatrick, & 11 

Leventhal, 2018) and the abuse liability for drugs (MacKillop, Goldenson, Kirkpatrick, & 12 

Leventhal, 2019; Strickland et al., 2019). Apart from substance use, this approach has also been 13 

used to evaluate how various forms of socially desirable behavior are affected by varying prices 14 

or levels of effort, e.g. purchasing groceries (Foxall, Wells, Chang, & Oliveira-Castro, 2010), 15 

“green” consumerism (Kaplan, Gelino, & Reed, 2018), and evaluating reinforcers in behavioral 16 

treatments (Gilroy, Kaplan, & Leader, 2018). 17 

 The earliest applications of the operant demand framework emerged from re-analyses of 18 

experimental nonhuman research. Among the early researchers evaluating these principles from 19 

an ecological perspective, Lea (1978) provided an early account of price elasticity of demand (𝜂) 20 

in behavioral experiments.1 Briefly, 𝜂 (Greek letter eta; elasticity) is an expression of the 21 

relationship between changes in prices (𝑃) and subsequent changes in consumption (𝑄) and 𝜂 22 

 
1 It warrants noting that multiple forms of 𝜂 exist, e.g. demand, income. For the sake of this short report 𝜂 will refer 

to price elasticity of demand, specifically, which may also be denoted as 𝜂𝐷 or 𝜂𝑃. 
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can be described in terms of inelastic, elastic, or unit elastic change. Quoting Lea (1978) on 1 

elasticity, “In an economic demand curve, elasticity of −1 means expenditure on the commodity 2 

is unaffected by price, whereas elasticity of absolute value less (more) than one means 3 

expenditure rises (falls) when price increases” (pg. 447). For convenience, 𝜂 is illustrated across 4 

a range of inelastic, elastic, or unit elastic prices in Figure 1. Here, the left-hand plot shows a 5 

fitted demand curve and the right-hand plot illustrates the overall responding across prices. As 6 

noted by Lea (1978), prices in the inelastic range are associated with rising expenditure (i.e., 7 

increased responding) while prices in the elastic range are associated with decreasing 8 

expenditure. The 𝑃 at which responding is at maximum is referred to as PMAX. 9 

 Although differential sensitivity to prices can be inferred visually (i.e., the peak of work 10 

output function), 𝜂 has a specific mathematical basis and derivation. Within the rapid growth of 11 

the operant demand framework, some researchers have described 𝜂 as a concept without 12 

presenting the specific mathematical basis for it and this has led to varying interpretations of 𝜂. 13 

For instance, it is our experience that some researchers erroneously presume individual rate 14 

parameters (e.g., 𝛼) or formulations of Essential Value (EV) are synonymous with 𝜂 because, 15 

visually, each speaks to variability in how change is expressed in a curve. That is, higher 𝛼 16 

values are related to a greater sensitivity to price while lower 𝛼 values are related to lesser 17 

sensitivity to price. Although several aspects of demand curve modeling speak to ‘sensitivity of 18 

price’, referring to these all as ‘elasticity of demand’ is not tenable because each of these 19 

measures represents a unique aspect of a demand function. The purpose of this report is to 20 

address each of the terms loosely referred to as ‘elasticity of demand’ and to provide the 21 

mathematical basis for each and how they each relate to the operant demand framework. 22 
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Mathematical Terms 1 

 Prior to reviewing the mathematical bases for each of these demand indices, several terms 2 

are defined and explained to the reader. Although many are likely familiar with these terms, 3 

these are provided regardless for the sake of completeness. That is, the demand functions and 4 

derivative are discussed in detail with information related to their construction, notation, and 5 

interpretation. 6 

Demand Function 7 

 When we speak of demand, we refer to the degree to which some individual or organism 8 

will work to defend bliss point consumption of a reinforcer. A demand function refers to some 9 

model or representation of the predicted level of demand for some reinforcer(s) as a function of 10 

one or more factors, e.g. price, availability of alternatives. Although contemporary approaches in 11 

operant demand use nonlinear models to represent the demand function, see Hursh and 12 

Silberberg (2008) for a contemporary example, it warrants noting that most economists typically 13 

use linear models because multiple regression models can accommodate numerous variables 14 

apart from price alone (e.g., income, availability of substitutes). In linear models, 𝜂 exists as a 15 

singular value and is either elastic, inelastic, or unit elastic (but remains the same across prices). 16 

Regardless of model, common terms used in demand functions include the number of goods 17 

consumed (Q) and price (P) per unit of consumption, i.e. unit price. For convenience, an example 18 

of a linear demand function representing Q as a function of P is illustrated in Figure 2. 19 

Derivative 20 

 In the most basic sense, the derivative of a function speaks to the rate of change in a 21 

function, e.g. 𝑓(𝑥), a given point, i.e. at 𝑥. Abstracting this to a demand function, the derivative 22 

speaks to the degree of change observed for a function, 𝑓(𝑥), per unit increase in 𝑥 (Allen, 23 
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1938). This description is general because the derivative of a function can be expressed in 1 

several ways. In the most basic form, the derivative can be approximated via a secant line 2 

between two points along the curve, see below. 3 

∆𝑌

∆𝑋
=

𝑓(𝑋2) − 𝑓(𝑋1)

𝑋2 − 𝑋1
 4 

The ratio here shown above is a division of the degree of change in the function, ∆𝑌, by the 5 

degree of change in 𝑥, i.e. ∆𝑋. As shown in Figure 3, as the value of ∆𝑋 approaches 0 the 6 

resulting slope converges to the instantaneous rate of change for the function (i.e., at 𝑥).  7 

 Although secant approximations a general estimate of the slope at a point (i.e., 𝑋1), such 8 

estimates are not well suited to nonlinear functions (e.g., “S”-shaped curves) because these 9 

estimates inherently presume linear slope even when functions are nonlinear. Alternatively, the 10 

more appropriate approach in these cases is to solve for the instantaneous rate of change at a 11 

given point (i.e., the slope of tangent line). In this situation, the derivative is presented as 12 

follows: 13 

𝑑𝑓

𝑑𝑥
=

𝑑

𝑑𝑥
𝑓(𝑥) = 𝑓′(𝑥) = 𝑦′ = lim

ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 14 

Although analogous to the slope, it is necessary to explain the role of the limit in this method of 15 

the derivative. The limit here speaks to the lowest, most precise value of ∆𝑋 as ℎ approaches 16 

zero. One cannot simply use 0 here because division by zero is undefined. As an alternative to 17 

numerically estimating ℎ using the terms here, terms may be differentiated such that h drops out 18 

of the solution. However, we note certain functions may not have a derivative while others could 19 

have many (i.e., different derivatives for different points). Regardless, if a limit exists for a 20 

function then that function can be differentiated and differentiation with respect to 𝑥 for 𝑓(𝑥) 21 

yields the instantaneous rate of change for that function at 𝑥. This is the most commonly used 22 
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approach because most functions can be differentiated. Prior to elaborating further, we note here 1 

that the notation of the derivative varies across fields and applications, with the Lagrange 2 

notation representing the (first) derivative as 𝑓′(𝑥) and the Leibniz notation as 
𝑑𝑓

𝑑𝑥
 or 

𝑑

𝑑𝑥
𝑓(𝑥). As 3 

a matter of preference, the Leibniz notation will be used throughout this report.  4 

 Derivatives have thus far been reviewed as if the demand function took only a single 5 

factor (i.e., 𝑓 was only as a function of 𝑥). Although studies of operant demand typically focus 6 

on demand as a function of P, economic research is rarely focused solely on P and demand is 7 

often modeled using several factors (e.g., price, income, and availability of substitutes). In these 8 

cases, differentiation performed with respect to a single parameter (e.g. 𝑥) alone would be 9 

considered a partial derivative because this would express rates of change as a function of that 10 

parameter, with all others held constant. The notation of the partial derivative differs from the 11 

base derivative and an example of this is shown below: 12 

𝜕𝑓

𝜕𝑥
=

𝜕

𝜕𝑥
𝑓(𝑥, 𝛼, 𝑄0, 𝑘) = 𝑓𝑥(𝑥, 𝛼, 𝑄0, 𝑘) 13 

Deriving Elasticity, 𝜼 14 

 The previous sections reviewed two relevant concepts, demand functions and derivatives. 15 

Clarification of these terms was necessary prior to discussing 𝜂 because the (first) derivative of a 16 

function is not necessarily a reflection of 𝜂. That is, 𝜂 speaks to relative changes between 17 

variables (e.g., Q and P) and there are multiple avenues for elucidating these relationships. In the 18 

interest of completeness, several common conventions for deriving 𝜂 are discussed below. 19 

Parameterized 𝜂  20 

As briefly noted earlier, economists often evaluate demand using multiple linear 21 

regression and one can directly model 𝜂 as a fitted parameter, assuming 𝜂 is the same at any 22 

given 𝑃. In the simple model provided in Figure 2, i.e. log(𝑄) = 𝐵0 + 𝐵1log (𝑃), the fitted 23 
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parameter 𝛽1 is a direct representation of 𝜂 because the dual logarithms of 𝑃 and 𝑄 reflect 1 

relative changes (See the Appendix for a fully worked example). Should one solve for 𝜂 in this 2 

case using derivatives, the solution ultimately reduces to 𝛽1 and 𝛽1 indicates that a 1% change in 3 

𝑃 is associated with a 10.5% decrease in 𝑄. That is, in this case the parameter 𝛽1 is a direct 4 

reflection of 𝜂. Regarding the specific fitting in Figure 2, the conclusion here would be that the 5 

demand for this good is highly (and singularly) elastic. Although a simple example is included 6 

here, these models are typically expanded to simultaneously evaluate 𝜂 with respect to income, 7 

availability of alternative goods, and other factors that may influence consumption. 8 

Log-Log Differentiation 9 

 In contrast to determining 𝜂 via specific parameters, 𝜂 is often determined through 10 

differentiation in the context of nonlinear models. In nonlinear models, the responsiveness 11 

between P and Q is not constant (i.e., not static) and 𝜂 will vary as 𝑃 changes. For instance, 12 

consider the Linear-Elasticity model demonstrated in Hursh, Raslear, Shurtleff, Bauman, and 13 

Simmons (1988). In this model, Hursh and colleagues presented a nonlinear model of demand as 14 

follows: 15 

log(𝑄) = log(𝐿) + 𝑏 log(𝑃) − 𝑎𝑃 16 

In this model, 𝐿 represents the predicted levels of consumption at a 𝑃 of 1, 𝑏 is the “initial 17 

downward slope of the demand curve” per Hursh et al. (1988), and 𝑎 represents changes in slope 18 

as a function of 𝑃. In contrast with the parameterized approach, where 𝜂 is a constant value, 𝜂 19 

here is not constant across increasing values of 𝑃. That is, 𝜂 at a given 𝑃 could be potentially 20 

inelastic (𝜂 < |1|), elastic (𝜂 > |1|), or unit elastic (𝜂 = |1|). This is distinct from the 21 

parameterized approach where a fixed value for 𝜂 is represented as an individual constant 22 

parameter. Given that this model is nonlinear, it is logical no individual parameter represents 𝜂 23 



RUNNING HEAD: ELASTICITY IN OPERANT DEMAND 9 

 

because 𝜂 is not a single, fixed value that persists across prices. Ultimately, the process for 1 

deriving 𝜂 here is via differentiation and the solution for 𝜂 is as follows (See Appendix for 2 

complete solution): 3 

𝜂 = 𝑏 − 𝑎𝑃 4 

The solution here requires differentiating 𝑃 with respect to the logarithmic increases in price, i.e. 5 

𝑑

𝑑𝑃
log(𝑃) =

1

𝑃
. That is, 𝜂 is not the first derivative for the Linear-Elasticity model and changes in 6 

P must be expressed as log(𝑃). Rather, 𝜂 here is determined using a partial derivative. When 7 

differentiated in log-log space, the instantaneous rate of change here reflects yields a unitless 8 

representation of 𝜂 as a function of variables 𝑎, 𝑏, and 𝑃. 9 

 Although the Linear-Elasticity model has been used extensively in the literature, Hursh 10 

and Silberberg (2008) later presented the Exponential model of demand. The structure of the 11 

Exponential model is listed below: 12 

log(𝑄) =  log (𝑄0) + 𝑘(𝑒−𝛼𝑄0𝑃 − 1) 13 

Here, the rate constant 𝛼 jointly reflects logarithmic changes in Q in conjunction with the 14 

intercept (𝑄0) and the span parameter (𝑘). In this more recent model, 𝛼 alone indexes the rate of 15 

change whereas the earlier model jointly represents the rate of change with two parameters, 𝑎 16 

and 𝑏. Further, the incorporation of 𝑄0 in the exponent was included to support the 17 

standardization of P across reinforcers (Hursh & Silberberg, 2008). Despite these differences 18 

between models, differentiation here is also performed with respect to log(𝑃) to evaluate relative 19 

changes in P and Q and the solution for 𝜂 in the Exponential model is as follows (See Appendix 20 

for complete solution): 21 

𝜂 = −𝑎𝑄0𝑘𝑃𝑒−𝑎𝑄0𝑃 22 
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Linear-Linear Differentiation 1 

 Although each of the preceding methods for deriving 𝜂 has used logarithms to evaluate 2 

relative changes in P and Q, 𝜂 can also be derived using the linear (natural) scale (e.g., Koffarnus 3 

et al., 2015; Yu et al., 2014). However, 𝜂 speaks to relative changes between variables and 4 

values of both P and Q in the linear scale must be adjusted such that changes in prices and 5 

consumption are relative (i.e., not absolute). That is, the absolute changes expressed on the linear 6 

scale can be transformed to reflect percentage changes. For instance, consider the Exponentiated 7 

model proposed by Koffarnus et al. (2015). Briefly, this model is a restatement of the 8 

Exponential model proposed by Hursh and Silberberg (2008) with model terms (i.e., 𝑄0) 9 

exponentiated to the linear scale. The structure of this model is noted below: 10 

𝑄 = 𝑄0 ∗ 10𝑘∗(𝑒−𝛼 𝑄0 𝑃−1) 11 

The incorporation of 𝑄 on the linear scale has the benefit of accommodating zero consumption 12 

values, however, evaluating 𝑄 on the linear scale requires additional steps to ensure differences 13 

are relative. That is, the derivative of this demand function with respect to 𝑃 reflects 14 

responsiveness in terms of absolute changes, or 𝜂′. The determination of 𝜂′ is indicated below: 15 

𝜂′ =
∆𝑄

∆𝑃
=

𝜕

𝜕𝑃
𝑓(𝑄0, 𝑘, 𝛼, 𝑃) 16 

The difference between 𝜂′ and 𝜂 is that 𝜂 is unitless and 𝜂′ is not. Fortunately, units here can be 17 

negated by multiplying the absolute responsiveness (𝜂′) by the respective 𝑃 by the predicted 18 

level of 𝑄 at given 𝑃. This is illustrated below (see Appendix for a complete solution). 19 

𝜂 = 𝜂′
𝑃

𝑄
 20 

In performing these operations, the absolute changes in 𝑃 and 𝑄 are instead reflected as 21 

percentage change, and thus, a relative and unitless representation of responsiveness between 22 
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two variables. In working through this example without logarithms, it warrants re-iterating that 1 

multiple methods are available for deriving 𝜂 but solutions are ultimately specific to the scale 2 

and units used in each instance. Further, it warrants noting that the exact solution for unit 3 

elasticity proposed in Gilroy, Kaplan, Reed, Hantula, and Hursh (2019) is robust to scale and 4 

unit differences and applies equally to both the Exponential and Exponentiated models. 5 

Clarifying 𝜼 in Operant Demand 6 

 The preceding sections served to illustrate 𝜂 and how 𝜂 retains a consistent derivation 7 

regardless of model structure, theoretical perspective, or specific variables. Despite 8 

differentiation serving as the basis for 𝜂 in demand functions, the term “demand elasticity” has 9 

emerged in studies of operant demand as a general reference to the ‘steepness’ or ‘rapidness’ of 10 

change in Q as a function of P. Although both 𝜂 and “demand elasticity” each speak to a 11 

responsiveness of changes in Q to changes in P, it warrants re-iterating 𝜂 has a specific 12 

mathematical basis while references to “demand elasticity” have used in the context of relatively 13 

ranking ‘steepness’ or rates of change (e.g., high vs low 𝛼). To make this comparison clearer, we 14 

direct the reader to Hursh and Silberberg (2008) where the authors state “What is needed is a 15 

new equation that maintains the predictive successes of the linear-elasticity equation but 16 

addresses the need of having a single parameter defining changes in elasticity of demand” pg. 17 

190. Here, we read and infer that the original intent of Hursh and Silberberg (2008) was to derive 18 

a singular parameter not to reflect 𝜂 directly but to reflect changes in 𝜂. That is, higher values of 19 

α represent more rapid changes in Q while lower values would represent more gradual changes. 20 

However, absent clarification between these, we have seen repeated instances in the literature 21 

wherein authors seemingly regard α as synonymous with 𝜂.  22 
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 Revisiting the mathematical basis for 𝜂, it is clear α alone cannot represent 𝜂 because α is 1 

a fixed value across prices while 𝜂 is dynamic. Revisiting Hursh and Silberberg (2008) again, 2 

they stated, “The slope of the demand curve, elasticity, is jointly determined by k and α, but 3 

because k is a constant, changes in elasticity are determined by the rate constant, α.” Here, the 4 

authors describe α as a value that indexes change in 𝜂, while 𝜂 ultimately a product of various 5 

terms (see the Appendix for a worked solution). In revisiting this statement, early accounts of α 6 

do not explicitly state that α and 𝜂 are distinct measures. Barring a more complete and explicit 7 

description of 𝜂, some have presumed α in this model represents 𝜂 and this is not true. 8 

Clarifying Parameter 𝛼 9 

 As noted earlier, α and 𝜂 are often communicated interchangeably when referring to 10 

“demand elasticity” in studies of operant demand. Newman and Ferrario (2019) visited this issue 11 

as well, noting “…elasticity is a well-defined and useful concept in economics, but 𝛼 is not a 12 

measure of elasticity. Rather, is a measure of the price at which the animal performs maximum 13 

work, equivalent to the quantity PMAX” pg. 12. Referring to the description provided in Hursh and 14 

Silberberg (2008), parameter 𝛼 was originally described as a measure representing “changes in 15 

elasticity.” The function of 𝛼 is more accurately described as representing changes in PMAX and 16 

this relationship is made clearer when reviewing the solution provided in Gilroy et al. (2019) – 17 

the solution for both PMAX and 𝛼 is listed below: 18 

𝑃𝑀𝐴𝑋 =
−𝑊0 (−

1
log10𝑘)

𝑎𝑄0
 19 

𝑎 =
−𝑊0 (−

1
log10𝑘)

𝑄0𝑃𝑀𝐴𝑋
 20 

 21 
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The solutions here highlight how, holding k and Q0 constant, both PMAX and 𝛼 are perfectly and 1 

inversely rank ordered with one another (i.e., larger 𝛼, smaller PMAX). That is, those factors held 2 

constant, PMAX and the inverse of 𝛼, 
1

𝛼
, will maintain a perfect rank order relationship with one 3 

another. Hursh and Roma (2013) highlighted this relationship and noted that this trait of 𝛼 served 4 

as a form of EV and also supported an early approximate of PMAX in the Exponential model of 5 

operant demand. The original approximation was possible because 𝛼, generally speaking, speaks 6 

to how rapidly the demand curve approaches the point of maximum responding, PMAX. Given the 7 

mathematical link between 𝛼 and unit elasticity, it is more appropriate to note that the changes 8 

captured in 𝛼 are more accurately described as reflecting changes in PMAX (or maximum 9 

responding) rather than changes in 𝜂 more broadly. 10 

Clarifying 𝑃𝑀𝐴𝑋 and Unit Elasticity 11 

 When we speak of PMAX, this measure reflects the P value at which an organism responds 12 

at the highest rates to produce the reinforcer (i.e., exerts most work). Generally speaking, 𝜂 at 13 

PMAX is typically −1 in the Exponential and Exponentiated models of demand, but instances exist 14 

wherein P = PMAX but 𝜂 ≠ −1. As discussed in Gilroy et al. (2019), no real solutions exist for 15 

𝜂 = −1 in situations where the span parameter k value is below 1.18, i.e. 
𝑒

log(10)
. Were the units 16 

of k the natural log rather than log10, the lower limit would be 𝑒. This limit is logical given that 17 

the demand curve must decrease at least 1 log unit decrease from 𝑄0 in response to 1 log unit 18 

increase of P to produce an 𝜂 of −1. That is, apart from variability in how researchers prepare 19 

this parameter (Kaplan, Foster, et al., 2018), the span constant also has an unintended effect of 20 

limiting 𝜂 (Newman & Ferrario, 2019). 21 

In such cases where k is defined below the limits noted above, a PMAX indeed exists (i.e., a 22 

price where maximum responding is observed) but 𝜂 at this point cannot be −1. Consider the 23 
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following example, a demand series is fitted to the Exponential model of operant demand with 1 

three separate k values: 1, 1.5, and 2. Per the solution from Gilroy et al. (2019), a solution for 𝜂 2 

of −1 exists only for the k values of 1.5 and 2. Newman and Ferrario (2019) also noted this 3 

limitation and provided a mathematical basis for the absolute lower limit of 𝜂 given k, 𝜂𝑀𝐴𝑋, and 4 

their solution is provided below:2 5 

𝜂𝑀𝐴𝑋 = −
𝑘

𝑒
 6 

Returning to our example of demand curves fitted with varying span constants, the 𝜂𝑀𝐴𝑋 for each 7 

is displayed in respective plots in Figure 4. Here, we see k sets the lower limit on the range of 𝜂 8 

possible across prices. Given this limitation, the value of the span constant may unintentionally 9 

introduce a situation where researchers are unaware that it is mathematically impossible for 𝜂 to 10 

equal −1. In this situation, 𝜂 at the observed PMAX in this situation would most likely be at or 11 

near the 𝜂𝑀𝐴𝑋, given the span constant because no real solution exists for 𝜂 = 1. In such a 12 

situation, parameter 𝛼 will continue to speak to a point of maximum responding but the link 13 

between PMAX and 𝜂 = 1 will be lost. 14 

Future Directions in Operant Demand 15 

 The operant demand framework has enhanced the ability of researchers to evaluate 16 

human and nonhuman responding under a variety of constraints (e.g., prices, substitutes 17 

available). This framework has rapidly grown to include a variety of experimental and 18 

hypothetical purchase measures (Bickel et al., 2018; Kaplan, Foster, et al., 2018), but several 19 

aspects of this emerging methodology warrant further refinement and clarification as this 20 

framework continues to expand. Principal among areas to clarify, 𝜂 in operant demand has been 21 

 
2 We note here that the lower limit proposed by Newman and Ferrario (2019) put k in base units of e. The log10 

equivalent would simply replace e with 
𝑒

log(10)
. 
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communicated in various ways and this detracts from a consistent interpretation of research 1 

findings across labs and across domains. That is, although loose references to “demand 2 

elasticity” may not alter scientific conclusions within individual experiments, imprecise 3 

references may lead to miscommunication of 𝜂 across studies and disciplines. For example, 4 

systematic meta-analyses of “demand elasticity” could theoretically be summaries of EV, 𝛼, or 5 

𝑃𝑀𝐴𝑋 and potentially never summarize 𝜂. Speaking of all these metrics interchangeably 6 

inevitably frustrates a true synthesis of how 𝜂 of demand for reinforcers varies within and across 7 

various disorders (e.g., alcohol abuse, illegal drug use). Apart from limiting research synthesis in 8 

the behavioral sciences, loose references to “demand elasticity” also limits the ability of 9 

researchers to clearly communicate with other fields where 𝜂 has a clear and precise 10 

interpretation (e.g., economics). For these reasons, we recommend that researchers adopt a 11 

common, more consistent definition of these parameters. Regarding 𝛼, we have found it more 12 

accurate to refer to this as an index of the rate of change in 𝜂, given the span of the demand 13 

curve (k) and the base level of demand intensity (Q0). This definition clearly articulates how 𝛼 14 

relates to 𝜂 as a function of other parameters (i.e., it is inversely related to PMAX). Similarly, we 15 

have found it more appropriate to present PMAX as the predicted or observed P that reflects peak 16 

levels of responding (i.e., maximum output). This definition is superior to describing PMAX as unit 17 

elasticity because PMAX is an explicit value of P and because 𝜂 is restricted in cases where 18 

constant k exists below the recommended lower limits (i.e., not always unit elastic). Lastly, we 19 

believe that 𝜂 is most clearly defined as the responsiveness of changes in Q to changes in P. 20 

Although general, a broad definition is warranted because 𝜂 ultimately varies across P in operant 21 

demand and because unit elasticity is only one particular instance of 𝜂. 22 
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 In addition to clarifying aspects of demand curve analyses, this report further elaborates 1 

upon the numerous challenges associated with an explicit span parameter in demand curve 2 

analyses. Namely, issues associated with k and 𝜂 present a continued and historical source of 3 

variability in operant demand. Furthermore, it is unknown to what degree misspecified k values 4 

(i.e., below recommended lower limit) have influenced subsequent syntheses of behavioral 5 

economic works. Looking forward, the issues with an explicit span parameter naturally prompts 6 

a re-evaluation of whether an explicit span parameter supports a consistent and replicable 7 

approach to understanding response-reinforcer relationships. That is, it may be necessary to 8 

pursue alternative analytical strategies free from this parameter. 9 

  10 
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Figure 1. Example Demand Curve and 𝑷𝑴𝑨𝑿 1 

 2 

These plots illustrate different levels of elasticity across prices. The left plot illustrates inelastic 3 

𝜂 < 1, elastic 𝜂 > 1, and unit elastic 𝜂 = 1 demand and the right plot illustrate how inelastic 4 

demand is associated with increases in responding while the elastic range is associated with 5 

decreases in responding.   6 
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Figure 2. Example Linear Demand Curve 1 

 2 

This figure illustrates a linear demand function plotted in log-log scales with a constant 𝜂 of 3 

−10.5.  4 
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Figure 3. Derivative as Secant Lines 1 

 2 

This figure illustrates the secant line approximations of change in 𝐹(𝑥) as a function of ∆𝑥. This 3 

estimate of the change in a function becomes increasingly exact as ∆𝑥 approaches the limit.  4 
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Figure 4. Range of 𝜼 as a Function of k 1 

 2 

The three plots in this figure illustrate a demand function with the same data evaluated using 3 

varying span constants. As displayed here, k affects the maximum lower limit of 𝜂 and this 4 

determines whether or not unit elasticity can be reflected in the demand curve.  5 
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Appendix A 1 

Notation of Derivative 2 

𝑑𝑓

𝑑𝑥
=

𝑑

𝑑𝑥
𝑓(𝑥) = 𝑓′(𝑥) = 𝑦′ = lim

ℎ→0

𝑓(𝑥 + ℎ) − 𝑓(𝑥)

ℎ
 3 

 4 

Notation of Partial Derivative 5 

𝜕𝑓(𝑥, 𝛼, 𝑄0, 𝑘)

𝜕𝑥
=

𝜕

𝜕𝑥
𝑓(𝑥, 𝛼, 𝑄0, 𝑘) = 𝑓𝑥(𝑥, 𝛼, 𝑄0, 𝑘) 6 

 7 

Deriving 𝜼 from Individual Parameters 8 

log(𝑄) = 𝛽0 + 𝛽1log (𝑃) 9 

𝑑

𝑑𝑃
𝛽0 + 𝛽1log (𝑃) =

𝛽1

𝑃
 10 

𝑑

𝑑𝑃
log(𝑃) =

1

𝑃
 11 

𝜂 =

𝑑
𝑑𝑃

𝛽0 + 𝛽1log (𝑃)

𝑑
𝑑𝑃

log(𝑃)
=

𝛽1

𝑃
1
𝑃

=
𝛽1

𝑃

𝑃

1
=

𝛽1𝑃

𝑃
= 𝛽1 12 

 13 

Deriving 𝜼 in the Linear Elasticity model of Demand 14 

𝜕

𝜕𝑃
𝑓(𝐿, 𝑎, 𝑏, 𝑃) =

𝑏

𝑃
− 𝑎 15 

𝑑

𝑑𝑃
log (𝑃) =

1

𝑃
 16 

𝜂 =

𝜕
𝜕𝑃

𝑓(𝐿, 𝑎, 𝑏, 𝑃)

𝑑
𝑑𝑃

log (𝑃)
=

𝑏
𝑃 − 𝑎

1
𝑃

=

𝑏
𝑃 − 𝑎

1

𝑃

1
= 𝑏 − 𝑎𝑃 17 

  18 
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Deriving 𝜼 in the Exponential model of Demand 1 

𝜕

𝜕𝑃
𝑓(𝑄0, 𝑘, 𝛼, 𝑃) = −𝑎𝑄0𝑘𝑒−𝛼𝑄0𝑃 2 

𝑑

𝑑𝑃
log (𝑃) =

1

𝑃
 3 

𝜂 =

𝜕
𝜕𝑃

𝑓(𝑄0, 𝑘, 𝛼, 𝑃)

𝑑
𝑑𝑃

log (𝑃)
=

−𝑎𝑄0𝑘𝑒−𝑎𝑄0𝑃

1
𝑃

= −𝑎𝑄0𝑘𝑒−𝑎𝑄0𝑃
𝑃

1
= −𝑎𝑄0𝑘𝑃𝑒−𝑎𝑄0𝑃 4 

 5 

Casting Absolute Changes in terms of Unitless Change 6 

𝜂′ =
∆𝑄

∆𝑃
=

𝜕

𝜕𝑃
𝑓(𝑄0, 𝑘, 𝛼, 𝑃) 7 

𝜂 =
%∆𝑄

%∆𝑃
=

∆𝑄
𝑄

∆𝑃
𝑃

=
∆𝑄

1
𝑄

∆𝑃
1
𝑃

=
∆𝑄

∆𝑃

𝑃

𝑄
=

𝜕

𝜕𝑃
𝑓(𝑄0, 𝑘, 𝛼, 𝑃)

𝑃

𝑄
= 𝜂′

𝑃

𝑄
 8 

 9 

Deriving η in the Exponentiated model of Demand 10 

𝜕

𝜕𝑃
𝑓(𝑄0, 𝑘, 𝛼, 𝑃) = −10𝑘(𝑒−𝛼𝑄0𝑃 − 1)𝛼𝑘𝑄0

2𝑒−𝛼𝑄0𝑃log (10) 11 

𝑑

𝑑𝑃
𝑃 = 1 12 

𝜂 =

𝜕𝑄
𝑄

𝜕𝑃
𝑃

=

𝜕
𝜕𝑃

𝑓(𝑄0, 𝑘, 𝛼, 𝑃)

𝑑
𝑑𝑃

𝑃

𝑃

𝑄
=

−10𝑘(𝑒−𝛼𝑄0𝑃 − 1)𝛼𝑘𝑄0
2𝑒−𝛼𝑄0𝑃 log(10)

1

𝑃

𝑄
 13 
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