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Abstract 

Various avenues exist for quantifying the effects of reinforcers on behavior. Numerous nonlinear 

models derived from the framework of Hursh and Silberburg (2008) are often applied to 

elucidate key metrics in the operant demand framework (e.g., Q0, PMAX), each approach having 

respective strengths and tradeoffs. This work presents and evaluates a model-free approach to 

elucidating key features of reinforcer demand using an adaptive task as opposed to deriving them 

from modeling applied to data using fixed price assays and calculus. An adaptive algorithm for 

hypothetical purchase tasks based on Reinforcement Learning is presented and evaluated for use 

in elucidating individual-level estimates of peak work (e.g., PMAX). The algorithm was evaluated 

across 4 different iteration lengths (i.e., 5, 10, 15, and 20 questions) and equivalence tests with 

simulated agent responses revealed that tasks with ten or more sequentially updated questions 

recovered PMAX values that were statistically equivalent to seeded values. Preliminary findings 

regarding adaptive purchasing tasks suggest that quantitative modeling may not be necessary in 

all applications of the operant demand framework and existing empirical metrics may be much 

more representative when tasks adapt in a process of exploring maximal personal utility. A short 

discussion on future extensions and conditions under which nonlinear modeling may or may not 

be necessary is presented. 

 Keywords: operant demand, purchase tasks, behavioral economics 
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Adaptive Purchase Tasks in the Operant Demand Framework 

 

The Operant Demand Framework is a mature and active collection of methods designed 

to evaluate how the effects of reinforcers on behavior scale as a function of various ecological 

factors, such as 'cost' and the availability of potential alternatives (Hursh, 1980, 1984). Hursh & 

Silberberg (2008) emphasized the need to expand upon earlier efforts to quantify reinforcer 

effects (e.g., breakpoints, response rates) and move toward another reinforcer-based framework 

that was sensitive to the continuous nature of reinforcer effects (e.g., varying effect across 

potential schedules) as well as the various forms of reinforcer-reinforcer relations (e.g., 

complements, substitutes) that likely influence choice behavior (Hursh & Bauman, 1987; 

Madden et al., 2007). 

 The most well-represented approach to quantifying reinforcer consumption using 

economic principles has been the Exponential Model of Operant Demand proposed by Hursh & 

Silberberg (2008). This model (Eq. 1) characterizes the effects of price (P) on levels of reinforcer 

consumption (Q). A total of three parameters are featured in the model and inferences drawn 

from this model emphasize two key measures related to consumption: Demand intensity (Q0) and 

the scaling of reinforcer effects as a function of Price (i.e., α and PMAX).1 

log!" 𝑄" + 𝑘(𝑒#$!% − 1) ( 1 ) 

Demand intensity reflects consumption when scaling due to P is zeroed out (i.e., Q0 = Q at a P of 

0) and therefore reflects a dimension of reinforcer consumption independent of price. 

Alternatively, consumption scaled as a function of price can be both directly and indirectly 

estimated in the model via α and PMAX, respectively. The α parameter reflects the rate of change 

 
1 Note. Quantity PMAX is not fitted directly and is instead derived from overall model predictions; however, 
controlling for all other parameters, parameter α is most representative of price scaling effects. 
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in price elasticity (η) observed across prices, given units inferred by the intercept (Q0) and span 

of the demand curve (k), and this reveals the distance in terms of P wherein the η of demand 

shifts from inelastic demand to elastic demand (i.e., PMAX). That is, α may be viewed as the rate 

by which the inelastic demand for reinforcers observed at lower prices advances toward elastic 

demand at increased prices. Unit elasticity (i.e., η = -1) and price associated with peak work, 

PMAX, equates to parameter α when accounting for parameters Q0 and k (Gilroy et al., 2019). 

Related to PMAX, the quantity OMAX represents refers to the total overall level of consumption 

observed at PMAX. These metrics have been found to each capture distinct and meaningful 

dimensions of reinforcer consumption for various types of reinforcer consumption (Aston et al., 

2017; Bidwell et al., 2012; Mackillop et al., 2009). 

Critical Elements in the Operant Demand Framework 

Individual patterns of consumption have been linked to various ecological and contextual 

factors (Strickland et al., 2022). Researchers applying research synthesis to characterize various 

forms of substance use (e.g., cigarettes, alcohol) have found good support for a two-factor latent 

solution consisting of Amplitude and Persistence (Mackillop et al., 2009). Various teams have 

replicated this finding across families of drug reinforcers, including cigarettes (Bidwell et al., 

2012), marijuana (Aston et al., 2017), heroin, and cocaine (Schwartz et al., 2023). Each bears 

close resemblance to elements either directly or indirectly estimated in the framework of Hursh 

& Silberberg (2008), with Amplitude most related to Q0 (i.e., volumetric levels of consumption) 

and Persistence most related to α and PMAX (i.e., sensitivity of consumption to changes in price). 

The metrics discussed here each provide information useful for evaluating reinforcer effects 

within and between distinct families of reinforcers. For example, a study may aim to draw 

comparisons between reinforcers to compare the potential of each for use and abuse (i.e., 
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balancing therapeutic effects with potential for problematic consumption levels). Alternatively, 

others may aim to conduct explorations of a single drug reinforcer within in range of varying 

units/dosages. 

 Hursh & Silberberg (2008) introduced the concept of Essential Value (EV) as a strategy 

for supporting comparisons across drug reinforcers and across differing units (e.g., dosages). 

Specifically, the goal of the EV strategy was to isolate variance associated with varying units 

(e.g., units of reinforcers produced) and to promote a more universal interpretation of how a 

given reinforcer affects behavior across schedules. The expression presented by Hursh & 

Silberberg (2008) was later expanded and simplified in Gilroy (2023), see Eq. 2. 

𝐸𝑉 = 𝑃&'( =
1
𝛼𝑄"

∗ −𝑊 3
−1
𝑙𝑛10)7	

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑	𝐸𝑉 = 	𝑃&'(𝑄" =	
1
𝛼 ∗ −𝑊 3

−1
𝑙𝑛10)7 

( 2 ) 

The two expressions in Eq. 2 reflect EV with (lower) and without (upper) a normalization 

accounting for reinforcer unit differences. The upper expression reflects the more typical use 

case when patterns of consumption within or across participants are examined and share a 

common reinforcer unit (e.g., # of cigarettes with equal nicotine content). In contrast, the lower 

expression is useful in the less common case wherein patterns of consumption are 

simultaneously analyzed across differing reinforcer units (e.g., high-nicotine vs. low-nicotine 

cigarette consumption). The EV metric highlights the importance of each of the metrics 

discussed thus far in characterizing and comparing reinforcer scaling (i.e., Q0 and PMAX). 

 The metrics Q0 and PMAX provide straightforward and representative reflections of 

Amplitude and Persistence. That is, although parameter α can also be used to characterize 

Persistence (i.e., a continuous rate of change in η), parameters such as α are traditionally difficult 



ADAPTIVE PURCHASE TASKS 6 

to interpret outside of the specific contexts in which they are estimated. For example, parameter 

α is straightforward to estimate and compare in contexts where a common scale (k) exists but 

difficult to compare outside of these circumstances. In contrast, PMAX reflects the scaling of 

reinforcers in a way that (1) is generally robust to variance in spans (ks) and (2) is easily 

interpreted via visual inspection of a work output curve, see Figure 1.2 Likewise, Q0 is also 

straightforward and can be easily estimated or directly sampled when the effects of pricing are 

absent, such as by directly observing or querying individual consumption at a P of 0 (see 

Amlung et al., 2015, for a relevant example of such). 

Elucidating Key Metrics in Operant Demand 

The most prevalent means of reporting demand intensity and the scaling of reinforcer 

effects take the form of fitted model parameters (i.e., Q0, α). High levels of adoption for the 

Exponential model presented by Hursh & Silberberg (2008) make good sense given the high 

level of applicability facilitated by a small number of parameters. For example, in the absence of 

very small fractional consumption values (e.g., 0.001) or non-consumption (i.e., 0), the original 

model fares quite well with consumption values that range across multiple orders. Furthermore, 

metrics not revealed directly from modeling (e.g., PMAX) are calculated with ease via exact 

solutions (Gilroy et al., 2019). Although derivatives of this framework have been put forward to 

accommodate cases where non-consumption values are observed (Gilroy et al., 2021; Koffarnus 

et al., 2015), each implementation represents a departure from the original manner of regression 

and presents with respective tradeoffs. 

Empirical alternatives that do not require the use of parameter estimation exist for Q0, 

OMAX, and PMAX. Demand intensity and responding representative of Q0 can be captured simply 

 
2 Note. The process of estimating PMAX is complicated when parameters such as span (k) fall below an absolute 
minimum threshold (Gilroy et al., 2019). 
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by sampling consumption in the absence of cost (i.e., QFREE). Likewise, values of OMAX and PMAX 

can be inferred visually via the inspection of a total expenditure curve (e.g., Greenwald & Hursh, 

2006). Although methods using empirical data are more easily performed, these present various 

limitations because of the simplicity of the strategy. First, researchers typically do not have a 

priori information regarding which prices are likely meaningful to prospective participants. Said 

a bit more directly, price assays for hypothetical purchase tasks are weakly informed and cover a 

substantial range (e.g., 0 to 10,000 USD per unit), which typically results in an oversampling of 

responding at higher/lower prices and undersampling of responding in the region of the curve 

associated with the greatest change (i.e., the bend of the curve). As a result of this lack of 

precision, the value of empirical data is limited because fixed pricing tasks rarely ask the right 

types of questions of the right participant. This combination of issues contributes to questionable 

predictions of PMAX and OMAX from empirical data because this approach presumes that one of the 

prices sampled is reasonably representative of PMAX (see Gilroy et al., 2019, for representative 

simulations). At present, contemporary fixed pricing practices substantially limit the utility of 

empirical metrics in the framework (i.e., empirical PMAX and demand intensity). 

Adaptive Algorithms in Operant Behavioral Economics 

In comparison to fixed assessments, which are identical across all respondents, adaptive 

assessments mutate in response to information provided by individual respondents. That is, an 

algorithm is put into place to present the most statistically informative questions for individual 

respondents. Although not yet available in work applying operant demand methods, adaptive 

tasks have been available for delay discounting research for some time. These include tasks that 

adapt to participant responses to identify a representative data point, such as 50% decay or ED50 

(J. H. Yoon & Higgins, 2008), or those that identify some parameter based on an assumption of 
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the presumed functional form of the process underlying the data (e.g., decay rate matched to 50% 

decay). 

The task presented by Du et al. (2002) features an algorithm to iteratively elucidate a 

boundary wherein the value of each prospect (e.g., smaller sooner, larger later) is essentially 

equivalent (i.e., neither substantially better than one another) by halving the difference of the 

commodity up or down from the previous participant response. This is also known as an 

adjusting amount task, which adaptively adjusts the amount of the commodity to find a specific 

point (i.e., in the case of discounting, an indifference point). The goal of this process is to reveal 

a derived ordinate among a set of fixed delays, which yields a curve that may be characterized 

via statistical analysis. For the Du et al. (2002) task, the algorithm was driven by pre-defined 

iterative limits (i.e., a set number of adaptive choices for each delay); however, other algorithms 

in this space included constraints more determined by participant responses.  

Johnson & Bickel (2002) used an algorithm that also adjusted the amount of the 

commodity based on participant responses, but how the amount was determined was based on 

moving upper and lower limits until the difference between the upper and lower limits was 2% or 

less of the larger magnitude. It warrants noting that both these tasks rely on a set of fixed delays 

and only the values within those delay points are assessed in an adaptive fashion (i.e., adapting 

amounts, not delays). Furthermore, data generated from these tasks still required nonlinear model 

fitting, so relevant metrics needed to be derived from the data before statistical comparisons 

could be performed. 

Other adaptive tasks exist and free the analyst from the need to perform model fitting by 

providing a parameter that references a presumed data-generating process. One example is the 

adjusting delay task (Koffarnus & Bickel, 2014), in which a larger later option is presented 
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alongside an immediate option half the size of the larger. Each choice changes the delay to a 

larger later option based on the participant’s previous response throughout five questions. The 

last response is then used to identify the ED50, which refers to the point at which the larger, later 

option is subjectively equal to the smaller, sooner option and is reported as a fitted parameter, 

presuming a hyperbolic form (Mazur, 1987). Another example is the Three-option Adaptive 

Discount rate measure (ToAD; H. Yoon & Chapman, 2016), which has similar logic to the 

Johnson & Bickel (2002) adjusting amount task but uses three choices to shift upper and lower 

limits over ten choices to identify a discount rate based on a hyperbolic function. While each of 

these adaptive tasks avoids the need for nonlinear model fitting, they still assume a functional 

form for analytic purposes. Because of this, these tasks cannot be used for comparing different 

functional forms of the data, as they presuppose them to identify a discount rate rather than 

generate different subjective values to be modeled. 

Despite the issues, the adaptive tasks used in discounting have still been fruitful in 

understanding the discounting of various commodities in different contexts. However, adapting 

these tasks to demand presents a challenge because of the relevant metrics used in demand (i.e., 

Q0, PMAX, OMAX). Adaptive tasks that find points across fixed points of a factor still require model 

fitting, thereby adding additional considerations given the number of available demand models 

and the technical skill needed to explore clinically meaningful covariates (Koffarnus et al., 

2022). In some cases, these individual model parameters are not meant to be interpreted on their 

own but instead are meant to directly identify said demand metrics (e.g., Newman & Ferrario, 

2020). Adaptive tasks that identify a parameter still necessitate a functional form of the data-

generating process which ignores individual variability. As such, there is presently no 
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comparable method that corresponds to metrics and values relevant to the Operant Demand 

Framework.  

The lack of a comparable procedure for purchase tasks in operant demand is likely due to 

several factors. First, these tasks do not have a ceiling or shared upper limit such as in the 

discounting paradigm (i.e., 100% of maximum value for a delayed/immediate choice). This 

invites a greater amount of variability in responding. Second, these tasks can include one or more 

forms of goods/services, and this adds complexity compared to simpler binary choices common 

in delay discounting studies (i.e., continuous vs. dichotomous responding). Third, metrics 

extracted from demand curves emphasize relative changes in consumption and price (e.g., PMAX) 

and this is less straightforward than optimizing toward some fixed quantity, e.g. ED50. For these 

reasons, adaptive purchase tasks for operant demand likely require a more flexible approach. 

Thus, the creation of an adaptive demand task that identifies relevant demand metrics without the 

additional need for nonlinear model fitting (see Kaplan et al., 2021, for additional considerations) 

with a high degree of precision would decrease the barrier of entry to study demand for various 

commodities and simplify statistical analyses. 

Machine Learning and Dynamic Adjustment Algorithms 

The term Machine Learning (ML) refers to a family of methods designed to support 

drawing generalizable inferences from data (Blum et al., 2020). These tools are applied broadly, 

toward many practical and theoretical issues, and a complete review of these methods is beyond 

the scope of this work. Rather, the focus of this work is instead on how ML can be used to 

supplement contemporary methods in purchase tasks commonly used in operant demand 

research. The central goal of this work is to present and review a process of developing an agent 
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that responds to the input of a user and guides the presentation of future pricing questions as a 

function of informational value (i.e., associated with greater resource allocation/responding). 

Reinforcement Learning (RL) can be viewed as a derivative of ML; however, RL is 

distinct from both supervised and unsupervised forms of ML. For instance, ML is traditionally 

applied to either extract structure from data or perform classification, whereas RL is often used 

to guide the making of "sequential optimal decisions under Uncertainty" via a Markov Decision 

Process (Rao & Jelvis, 2023). These tools are frequently used to model decision-making 

processes (e.g., an adversary for computer games) through the design of agents that suggest 

actions (K), given prior/available information and environmental state. The choice to 

demonstrate a given action (k) is conditioned on a history of prior reinforcement and present 

conditions. The reinforcement element of this approach refers to a weighting of respective 

actions (K) given the history and likely future of rewards. Various algorithms that differentially 

weight actions differ in how each balances the need for exploring available actions and for 

exploiting prior experience. 

Actions available to agents are favored or made more likely based on the concept of 

regret. Regret refers to the evaluation of observed rewards associated with actions (i.e., more 

regret equates to exploring an underperforming action). The selection of actions by the agent is 

driven by levels of regret, whereby the most likely action to pursue is the one that maximizes the 

probability and quantity of reward (i.e., minimizing regret). This general process can be adjusted 

to balance the need for exploring unexplored actions and exploiting prior knowledge to seek 

optimal rewards. 
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The choice of algorithms incorporated in RL approaches is guided based on various 

assumptions for the decision-making process and the types of data being optimized (Rao & 

Jelvis, 2023). For example, there are often distributional assumptions regarding the probability or 

magnitude of reward for specific actions (e.g., Binomial for yes [1] or no [0] responses). 

Additionally, the relative superiority of an action may not be stationary, and different actions 

may have superior outcomes at different points in time. Algorithms for dynamically predicting 

optimal actions vary considerably and are carefully selected or designed on the specific nature of 

the task, context, and manner of reward.  

Partially Ordered Set Master Algorithm 

The Partially Ordered Set Master (POSM) algorithm is a variant of RL that explores 

various actions that are ordered (Missura & Gärtner, 2011). For example, the ordering may 

correspond to multiple settings that vary in terms of increasing difficulty to a hypothetical user. 
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The POSM algorithm is unique in that the available actions (i.e., 𝑘 ∈ 𝐾) are ordered rather than 

each action having a discrete distribution. The ordering inherent in the POSM algorithm is useful 

in purchase tasks because ordering naturally exists among pricing options and because there is no 

assumption that the price associated with peak expenditure is stationary over time. The algorithm 

presented in Missura & Gärtner (2011) is depicted in Algorithm 1. 

The original purpose of the algorithm was to assist in identifying an optimal setting 

regarding user performance (i.e., neither too easy nor too hard). The use of the term 'master' is 

related to the game-based context and the design of an intelligent adversary (i.e., as if opposing a 

‘master' in some game-like context). Beliefs regarding specific settings are updated using 

performances demonstrated by the user, particularly when a given setting appears 'too easy' (-1) 

or 'too hard' (+1) for the user. The total mass of beliefs is reflected across policies for 'too low' 

and 'too high' at a given time (t), represented for each action (k) as At and Bt, respectively. Each 

of these are listed below in Eq. 3. 

𝐴*(𝑘) = D 𝑤*(𝑥)
	

,∈.,,≽.

 

𝐵*(𝑘) = D 𝑤*(𝑥)
	

,∈.,,≼.

 

( 3 ) 

The process of re-weighting beliefs across prices according to a fixed constant is illustrated in 

Algorithm 1. This approach is efficient in terms of maximizing information because the process 

of updating beliefs, 𝛽𝑤*(𝑥), carries forward to all levels above or below action k. Estimates of 

beliefs favoring specific actions at a specific time (𝜃*) are determined using the minimum of both 

policies for A and B for each level of k at a given time t. The specific calculation for this is 

provided below in Eq. 4. 
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𝜃J* = 𝑎𝑟𝑔𝑚𝑎𝑥	𝑚𝑖𝑛L𝐴*M𝜃J*N, 𝐵*M𝜃J*NP ( 4 ) 

An Algorithm-driven Hypothetical Purchase Task 

The POSM algorithm can be adapted for use in purchase to explore levels of price (P) 

using the total amount of expenditure (i.e., PQ) and the concept of regret across K levels of P. 

The minimization of regret dynamically guides the exploration of prices in search of a point of 

peak expenditure. The point at which peak expenditure is optimized reveals the empirical PMAX 

and OMAX for the user. A visual of the link between the demand curve, the point of unit elasticity 

(PMAX), and the point of peak work (OMAX) is illustrated in Figure 1. 

Figure 2 provides an overview of how the POSM algorithm can be used to guide 

questions presented to users in the context of a purchasing task. The begins with the initialization 

of a vector of beliefs at K levels of P (e.g., 1-500 USD; w = 1) and the generation of an initial 

prediction. Per Eq. 4, this is essentially a uniform prior, and the initial prediction is the midpoint 

of the range of levels (e.g., P of 250 USD for pricing from 1 to 500 USD). Input from the user 

across iterations reveals expenditure (R) at respective levels of price (k) and beliefs are updated 

to favor levels that minimize regret (i.e., produce value closest to presently known OMAX). This 

process is either repeated for a fixed number of iterations (t) or terminated once a threshold is 

met and further iterations are unlikely to further reduce regret. Figure 3 illustrates a simulated 

sequence wherein the agent adapts to the expenditure of the simulated user and guides the prices 

presented to more sample levels at or near PMAX (see left). The overall regret decreases as the 

user provides information that more consistently produces the highest expenditure (OMAX; see 

right). The empirical data comprising the work output and demand functions learned from the 

simulated user in the task are presented in Figure 4. 
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Both Figure 3 and Figure 4 illustrate how a reinforcement learning approach pairs quite 

elegantly with methods designed to explore reinforcer value. The POSM algorithm is quite suited 

given the strategic use of ordinal information and usefulness in seeking questions that provide 

the most informational value (i.e., nearer PMAX) and avoiding values that are seldom useful (i.e., 

non-consumption at prohibitively expensive prices). 

Research Questions 

The primary goal of this research was to present and evaluate an adaptive approach to 

evaluating reinforcer value for use in adaptive purchasing tasks. This work primarily focused on 

whether the algorithm, across varying question lengths, could reliably and efficiently recover 

unknown values of PMAX. This algorithm was evaluated in two dimensions with research 

questions specific to each. 

Research Question 1 (RQ1): Given simulated PMAX values, does the POSM algorithm 

recover the price associated with peak work (PMAX) in purchase tasks consisting of 5, 10, 

15, and 20 sequential questions? 

Research Question 2 (RQ2): Related to RQ1, what is the minimum number of 

sequential questions necessary to recover statistically equivalent estimates of PMAX?  
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Method 

Simulated Agents 

A total of 4,000 (n = 1,000 x 4 run lengths) simulated agents were generated across four 

different hypothetical purchase task lengths: 5, 10, 15, and 20 questions. Each simulated series 

sampled a randomly selected OMAX, PMAX, and Q0 from the ranges of 50-950, 1,000-5,000, and 

10-100, respectively. The quantity expended by the hypothetical user was generated by using 

such values and the solutions provided in Gilroy (2023) and Gilroy et al. (2019) to produce a 

prediction using the Exponential model proposed by Hursh & Silberberg (2008). All simulations 

were conducted using the R Statistical Program (R Core Team, 2013), and the same seed value 

was used across simulations to isolate differences solely due to iteration length. 

Analytic Strategy 

Four individual equivalence tests were conducted for each of the varying numbers of 

questions in the task. All equivalence tests were performed using the TOSTER R package 

(Lakens, 2017; Lakens & Caldwell, 2022). For each test, the smallest effect size of interest was 

for differences between simulated and true PMAX values was set to a value of 0.01. The 0.01 value 

on the log scale provides a convenient means of approximating an estimated 1% difference 

between paired values and differences below this upper and lower threshold were not considered 

to be statistically meaningful.  
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Results 

RQ1. Tests of Equivalence for PMAX 

Illustrations of task equivalence are illustrated in the righthand portion of Figure 5 for 

tasks featuring 5, 10, 15, and 20 sequential questions. Task performance with 5 questions was 

not statistically different (i.e., interval did not include 0) but the two did not demonstrate 

statistical equivalence (i.e., interval exceeded SESOI bounds). The performance of tasks that 

included 10, 15, and 20 questions were not significantly different and demonstrated statistical 

equivalence. 

RQ2. Effects of Iteration Length on PMAX 

 Visualizations of task correspondence across varying task lengths are provided in the 

lefthand portion of Figure 5. Visual inspection revealed strong overall correspondence between 

estimates of PMAX across task lengths. Tasks that featured 5 sequential questions yielded PMAX 

values that were highly correlated with seed PMAX values (r = 0.97, p = 0); however, tasks at this 

length did not demonstrate statistical equivalence. All remaining task lengths demonstrated 

essentially perfect correspondence, with lengths of 10 (r = >.999, p < .001), 15 (r = >.999, p 

= .001), and 20 (r = >.999, p = .001) questions producing statistically equivalent estimates of 

PMAX.  
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Discussion 

Purchase tasks are among the most frequently used tools in research applying the Operant 

Demand Framework. Data from these tasks are readily analyzed using any of the modeling 

options derived from the framework of Hursh & Silberberg (2008). However, despite good 

adoption and flexibility, the fixed and standardized nature of pricing assays included in these 

tasks limits research on individual decision-making in several regards. For example, the fixed 

nature of contemporary pricing assays limits the usefulness of empirical metrics of EV because 

the price points sampled seldom closely correspond with the point at which demand for a 

reinforcer shifts from inelastic to elastic (e.g., PMAX, OMAX). The goal of this work was to provide 

an introduction and evaluation of an adaptive approach based on RL for purchase tasks that 

could be used to extend research in operant demand. 

The results from this study revealed strong overall performance across tasks of all lengths 

and good correspondence was observed between seeded PMAX, even with the most abbreviated 

forms of the task (i.e., just five questions in a given task). However, despite good 

correspondence, differential degrees of statistical equivalence were observed for tasks across 

varying batches of questions presented to simulated agents. The most abbreviated form of the 

task, which entailed a series of 5 questions, was significantly correlated with a seeded PMAX, but 

the overall evaluation did not support a determination of statistical equivalence. In contrast, all 

evaluations with lengths of ten or more questions demonstrated statistical equivalence and 

consistently recovered the seeded values. 

Overall findings here suggest that more abbreviated adaptive tasks may be less capable of 

capturing PMAX values in several cases, and this warrants a bit of discussion. First, shorter tasks 

may be less reliable when the range of prices considered is substantial (e.g., 0-1000 USD/unit) 
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and/or the participant’s PMAX value falls near the extremes (e.g., 950 USD/unit). Given that the 

task operates from an initial uniform prior, larger ranges of questions/updates would be 

necessary to ensure enough freedom for the algorithm to explore the parameter space nearer the 

extremes (i.e., larger ranges = more iterations required). Overall, providing a larger series of 

questions to the user would provide the algorithm with additional opportunities to sufficiently 

recover from a chance errant response from the user (i.e., user error). This feature of adaptive 

purchase tasks is useful because a sufficient number of questions asked in this manner may 

lessen the risk of certain data being determined ‘unsystematic’ and not amenable to statistical 

analysis. 

Simulations performed in this study revealed that adaptive purchase tasks with ten or 

more sequential questions were essentially perfect in providing empirical measures of PMAX that 

were identical to seeded PMAX values. This finding suggests that RL algorithms could enhance the 

flexibility and utility of purchase tasks and may obviate the need for more statistically and 

mathematically complex operations when using fixed price arrangements. Specifically, nonlinear 

models, and the solutions necessary for deriving key metrics of essential value from them, may 

not be necessary to extract values of critical interest within the current framework. That is, both 

Q0 (i.e., sampling consumption at P of 0) can PMAX/OMAX can be revealed with good consistency 

via empirical means and without the need for statistical determination.  

Implications for Modelling in Operant Demand 

The framework of Hursh & Silberberg (2008) has been critical in guiding modern 

approaches for evaluating choice behavior under constraints (e.g., varying prices, availability of 

alternatives). The Exponential model of operant demand and its derivatives have provided a 

reliable means of elucidating critical elements in the Operant Demand Framework (e.g., 
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revealing Q0 and PMAX). Modeling has traditionally been necessary because fixed pricing assays 

seldom provided information sensitive enough to support comparisons within or between 

participants. However, given that pricing assays can be made adaptive and directly reveal and 

sample relevant prices, nonlinear modeling such as that suggested by Hursh & Silberberg (2008) 

may not be required to answer many common research questions. 

Although there is an active community of researchers with statistical training working to 

provide guidelines and support for the extension of nonlinear modeling practices, findings from 

this study prompt questions regarding the necessity of nonlinear methods in the framework. That 

is, researchers may not need to extend beyond simpler tests (e.g., T-tests, ANOVA) to make 

group-level comparisons based on specific empirical values (e.g., Q0). The tools presented in this 

work suggest that newer adaptive tasks could address prior shortcomings without reliance on 

nonlinear methods and a departure from a modeling-forward approach has the potential to 

simplify current practices in several ways. 

First, the strategy provided here avoids making assumptions about the underlying 

processes involved in decision-making, which is an assumption that is not easily resolved. The 

adaptive task presented in this work is not bound to a specific underlying process, which may 

vary across individuals/organisms, and does not require an opinion regarding which model form 

is most suited to all in a study. Given that the true data-generating process is unknown, the 

strategy described here provides a method for deriving metrics relevant to EV that avoids many 

problematic assumptions. 

Second, related to the prior point, fixed pricing arrangements oversample consumption at 

pricing extremes and this reveals substantial variability in the ranges of consumption observed 

for individuals and groups. Most models derived from the framework of Hursh & Silberberg 
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(2008) assume a common range of consumption between pricing extremes and issues regarding 

the modeling of zero and non-zero lower limits remain unresolved at this time (Gilroy, 2022; 

Gilroy et al., 2021; Koffarnus et al., 2015). The approach presented here provides a path forward 

for this issue by focusing less on price extremes and instead on prices within the most 

information portion of the demand curve, those near PMAX and the point of unit elasticity. This 

approach provides a means of extracting key metrics of operant demand without the need to 

grant unnecessary influence to consumption at pricing extremes (e.g., consumption values at or 

near zero) and make strong assumptions regarding a range of consumption shared across all 

consumers in a group or sample. This strategy provides a parsimonious alternative to 

contemporary operant demand methods and addresses historical issues in the framework within 

the task presented rather than the modeling performed.  

Third, and lastly, addressing known issues with fixed purchase tasks by using an adaptive 

algorithm does not limit any actions available to the analyst. Specifically, the data gathered from 

adaptive purchase tasks reveals empirical metrics with high precision and also provides empirical 

choice data that remains amenable to nonlinear statistical analysis. For example, the analyst may 

use such tasks to extract key metrics of demand empirically but also use individual-level 

responses to characterize the nature and form of those curves. Relatedly, parameters such as α 

are trivial to solve without regression when information regarding Q0 and PMAX are already 

known (see Appendix). 

Limitations and Areas of Future Extension 

The methods presented in this work provide an encouraging extension of RL methods 

that are conceptually consistent with the Operant Demand Framework and provide a potential 

alternative to unnecessarily complex nonlinear modeling. The results presented here are highly 
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encouraging, suggesting that nonlinear modeling may not be a prerequisite to the application of 

the Operant Demand Framework and that many long-standing issues with nonlinear models may 

be avoided altogether. However, despite encouraging findings, further evaluation with real-world 

applications is necessary to better understand how this novel approach can best support work in 

Operant Behavioral Economics. Additionally, statistical training and expertise in computer 

science are not skills that are reflected in the operant training tradition, and the implications of 

increased reliance on algorithms in applied research are not yet fully understood.  
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Appendix 

Extracting Model Values from Model-free Estimates 

The quantity PMAX equates to α given respective units. The results of empirical fitting 

yielding Q0 and PMAX can be used to solve for α (given any suitable value for k). Relevant 

calculations are provided below illustrating respective calculations (left) and a worked solution 

(right). The plot below illustrates the range of prices with the solved α parameter. 
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Figure 1. Prototypical Demand and Revenue Functions 
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Figure 2. Workflow for Adaptive Hypothetical Purchase Task 
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Figure 3. Price Beliefs, Expenditure, and Regret Minimization 
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Figure 4. Price and Consumption Sampling from Adaptive Task 
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Figure 5. Correspondence and Equivalence for PMAX Values 

 


