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Abstract 

Antecedent- and consequence-based procedures decrease errors during conditional 

discrimination training but are not typically guided by error patterns. A framework based in 

behavioral-choice and signal-detection theory can quantify error patterns due to (1) biases for 

certain stimuli or locations and (2) discriminability of stimuli within the conditional 

discrimination. We manipulated levels of disparity between sample (Experiment 1) and 

comparison (Experiment 2) stimuli by manipulating red saturation using an ABA design with 

children diagnosed with autism spectrum disorder (ASD). Lower disparities decreased 

discriminability and biases were observed for some participants during the low-disparity 

conditions. These findings demonstrate the use of these analyses to identify error patterns during 

conditional-discrimination performance in a clinically relevant population under laboratory 

conditions. Further development of this framework could result in the development of 

technologies for categorizing errors during clinically relevant conditional-discrimination 

performance with the goal of individualizing interventions to match learner-specific error 

patterns.  

 

Keywords: autism spectrum disorder, bias, children, conditional discrimination, discriminability, 

errors, matching to sample  
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The ability to discriminate among stimuli is foundational for many skills, including 

academics, socializing, communicating, engaging in self-care routines, and others (Green, 2001). 

Simple discriminations involve three terms (Davison & Nevin, 1999), an antecedent, a behavior, 

and a consequence. For example, an adult tells a child to sit down and provides praise once the 

child is seated. In contrast, conditional discrimination involves a four-term contingency in which 

a conditional stimulus (e.g., the printed word “dog”) changes the function of a stimulus in the 

comparison array (e.g., the picture of the dog becomes the SD, or S+, and the picture of the cat 

becomes the s-delta, or S-). Pointing to a picture of a dog produces reinforcement in the presence 

of the printed word “dog” and extinction in the presence of the printed word “cat” and vice versa. 

Conditional discriminations typically are taught using matching-to-sample (MTS) 

procedures in which the conditional stimuli, or sample stimuli, are comprised of two or more 

visual or auditory stimuli (e.g., the printed words “dog” and “cat”). Correct responses involve 

choosing the comparison stimulus (e.g., the picture of the dog or cat) that corresponds with the 

sample stimulus, which typically results in the delivery of a reinforcer. Errors involve selecting 

the nonmatching or noncorresponding comparison that would typically produce extinction or 

punishment (e.g., Fisher, Pawich, Dickes, Paden, & Toussaint, 2014). Conditional 

discriminations have been taught in laboratory studies with both humans and nonhumans (see 

Beran, Menzel, Parrish, Perdue, et al., 2016; Davison & Nevin, 1999, for reviews) and to 

individuals diagnosed with autism spectrum disorder (ASD) and other developmental disabilities 

(e.g., Fisher, Retzlaff, Akers, DeSouza, Kaminski, & Machado, 2019; McIlvane, Kledaras, 

Gerard, Wild, & Smelson, 2018; Williams, Johnston, & Saunders, 2006).  

 Although there is extensive research using MTS procedures to train conditional 

discriminations, some individuals in both clinical and laboratory settings exhibit persistent errors 
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during training (see Green, 2001; Dube & McIlvane, 1997; Grow, Carr, Kodak, Jostad, & 

Kisamore, 2011; Saunders & Spradlin, 1989). Both antecedent and consequent manipulations 

have been developed to decrease errors. Antecedent manipulations arrange stimuli during the 

beginning of trials to increase contact with the relevant stimuli. For one example, differential 

observing responses require participants to emit different responses depending on the currently 

presented sample stimulus (e.g., Dube & McIlvane, 1999; Fisher, Kodak, & Moore, 2007; Fisher 

et al., 2019; Truppa, Mortari, Garofoli, Privitera, & Visalberghi, 2011). Fisher et al. (2019) had 

participants echo the auditory sample stimulus prior to selecting a picture in the comparison 

array. In contrast, consequent manipulations introduce interventions following errors. Examples 

of such procedures include repeating trials following errors (Da Silva Barros, De Faria Galvao, 

& McIlvane, 2002; McGhan & Lerman, 2013), punishment (Fisher et al., 2014), and 

experimenter modeling of the correct response (e.g., Kodak et al., 2016).  

Although previous studies have used antecendent- and consequence-based interventions, 

there are two related problems with their implementation. First, few studies describe a method 

for selecting interventions in response to specific error patterns in performance. Although 

research comparing the efficacy and efficiency of antecedent- and consequence-based 

interventions identified specific procedures as most efficacious and efficient for particular 

learners (e.g., Cubicciotti, Vladescu, Reeve, Carroll, & Schnell, 2019; Grow et al., 2011; Kodak, 

et al, 2016; Kodak, Fisher, Clements, Paden & Dickes, 2011; McGhan & Lerman, 2013), these 

strategies are infrequently implemented in response to specific error patterns during training. 

Second, the identification of interventions based on learner errors requires strategies to identify 

and distinguish between the types of errors that may occur during conditional discrimination 
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training. However, there is a paucity of research on strategies to identify and characterize learner 

errors. 

In a notable exception, Grow et al. (2011) categorized errors during auditory-visual 

conditional discrimination training as molar win-stay errors, molecular win-stay errors, and 

errors from position biases. Win-stay errors (Lovaas, 2003; Kangas & Branch, 2008; Williams et 

al., 2006) reflect the continued selection of comparisons reinforced during previous trials 

(molecular) or previous training conditions (molar). Position biases reflect the continued 

selection of a location in the comparison array regardless of the sample. Errors based on 

discriminability of experimental stimuli were not categorized directly but inferred when win-stay 

and position errors did not account for imperfect performance. Although the methods of Grow et 

al. offer a beneficial starting point for categorizing errors during conditional-discrimination 

training, strategies to characterize and mitigate errors on an individual basis remain largely 

unexplored, and these could provide a useful tool for increasing the efficiacy of conditional-

discrimination training.  

Davison and Tustin (1978) developed a quantitative framework based in behavioral-

choice and signal-detection research to identify two error patterns exhibited during conditional 

discriminations – errors of discriminability versus errors of bias. Discriminability is a measure 

resulting from the degree to which relevant sample or comparison stimuli are distinguishable 

features of conditional discrimination (see Davison & Nevin, 1999, for a relevant discussion). 

For an example manipulating sample-stimulus disparity from basic laboratory research, Davison 

and McCarthy (1987) trained pigeons to peck the right key to access reinforcer delivery if the 

center key was illuminated for 5 s and to peck the left key to access reinforcer delivery if the 

center key was illuminated for 12 other durations. Accuracy was lower when the disparity 
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between sample durations on the center key was small (e.g. 5 s vs. 7.5 s) than when greater (e.g., 

5 s vs 57.5 s). For example, samples with lower disparity such as “dog” and “log” would likely 

produce poorer accuracy than “dog” and “stick.” Relatedly, Stromer, McIlvane, Dube, and 

Mackay (1993) demonstrated that presenting multiple samples during trials resulted in more 

difficult sample discriminations as indicated by reductions in accuracy during MTS procedures 

in children diagnosed with developmental disabilities (see also Zentall, 2005, for a review of 

related research with laboratory animals). Thus, decreases in accuracy with more similar sample 

stimuli (i.e., lower disparity) are predicted to be reflected in decreases in discriminability.  

In contrast, accuracy can also decrease under situations in which stimuli are not 

necessarily impossible to discriminate but biases compete with responding accurately. 

Specifically, bias is a measure resulting from the degree of preference for a comparison stimulus 

or location. For example, Cumming and Berryman (1961) documented inherent biases for both 

stimulus color and stimulus location in pigeons because no obvious variables accounted for the 

biases. Pecking the comparison key matching the color from the sample produced delivery of 

food reinforcers. All pigeons exhibited more frequent responding on one comparison location 

regardless of where the correct comparison stimulus appeared – a location bias. Furthermore, a 

few pigeons also demonstrated a stimulus bias by choosing a particular color comparison more 

frequently. Similarly, in applied research with typically developing children, Schneider, Devine, 

Aguilar, and Petursdottir (2018) reported both stimulus and location biases in MTS tasks 

presenting birds, flowers, or flags. Further, differences in reinforcement variables for accurate 

performance also can impact bias. For example, Alsop et al. (2016) arranged higher versus lower 

probabilities of reinforcement for accurate matches between sample-comparison pairs in children 

diagnosed with attention-deficit hyperactive disorder. They observed consistent biases toward 
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comparison stimuli resulting in more likely reinforcement for accurate matches. Thus, 

differences in reinforcer variables are predicted to be reflected in biases but inherent preferences 

can also influence biases. 

Davison and Tustin’s (1978) quantitative framework offers potential benefits for applied 

researchers and clinicians because it can identify patterns of errors due to discriminability alone 

or biases for comparison stimuli or locations. Quantifying these error patterns could contribute to 

identifying the source(s) of errors contributing to poor conditional-discrimination performance. 

Refer to Figure 1 as we describe the quantification of discriminability and bias through the 

distribution of correct responses (11, 22) and errors (12, 21) at the comparison choice points of 

conditional discriminations. For example, the written word dog as the sample (S1) followed by a 

choice of the comparison picture of the cat (C2) would be Error12.  

According to Davison and Tustin (1978), discriminability can be quantified with log d: 

𝑙𝑜𝑔 𝑑 = .5 𝑙𝑜𝑔[)!"##$%&!!
'##"#!"

* )!"##$%&""
'##"#"!

*],		 	 	 	 (1)	

where Correct and Error refer to correct (11, 22) and error (12, 21) responses, respectively (see 

Hutsell & Banks, 2015, 2017; Shahan & Podlesnik, 2006, 2007). Note that all logarithms 

throughout are base 10. Log d measures the accuracy of the choice pattern (theoretically) 

independently from the reinforcer distribution or any inherent biases the individual exhibits 

(Alsop & Rowley, 1996; Davison & Jenkins, 1985). Values of log d range from negative to 

positive infinity, although log d is zero at chance performance with equal correct and error 

responses to comparisons, and increases as accuracy improves. Thus, log d quantifies 

discriminability between sample stimuli or between comparison stimuli, with larger positive 

values indicating greater discriminability (Davison & McCarthy, 1987). Given the log10 space, 
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obtained log d values of 1 indicate a 10:1 ratio of accurate-to-inaccurate responses, obtained log 

d values of 2 indicate a 100:1 ratio, etc.  

According to Davison and Tustin (1978), biases between comparison stimuli and location 

are quantified by the equations for log b and are (theoretically) independent from log d 

(discriminability). Equation 2 quantifies bias between comparison stimuli using terms as they 

appear in Equation 1:  

𝑙𝑜𝑔 𝑏 (𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠) = 	 .5 𝑙𝑜𝑔 7)!"##$%&!!
'##"#!"

* ) '##"#"!
!"##$%&""

*8.	 	 	 (2)	

Equation 3 quantifies bias for comparison location and is calculated similarly:  

𝑙𝑜𝑔 𝑏 (𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛) = 	 .5 𝑙𝑜𝑔 => !"##$%&#$%&
!"##$%&'()*&

? > '##"##$%&
'##"#'()*&

?@.	 	 	 (3)	

In Equation 3, Correctleft and Correctright refer to the correct responses to the comparison stimuli 

and Errorleft and Errorright refer to incorrect responses to comparison stimuli given the sample-

stimulus presentation (see Jones & White, 1992). Therefore, these two log b equations measure 

the degree to which the individual emits more responses to one comparison stimulus relative to 

the other comparison stimulus (Equation 2) or one comparison location relative to the other 

comparison location (Equation 3). Log b for both stimulus and location range from negative to 

positive infinity, with log b values of zero denoting no indication of bias to a particular 

comparison stimulus or location. Given the log10 space, obtained log b values of ±1 indicate a 

10:1 or 1:10 ratio, respectively, of accurate-to-inaccurate responses; obtained log d values of ±2 

indicate a 100:1 or 1:100 ratio, etc. 

 Despite the potential clinical usefulness of quantifying error patterns using Davison and 

Tustin’s (1978) framework (McCarthy, 1991), log d and log b have mostly been used to 

categorize errors in conditional-discrimination performance in laboratory research (see Davison 

and Nevin, 1999, for a review). The only application of this general framework comes from 
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Fisher et al. (2014) in children diagnosed with developmental disabilities, who hypothesized that 

introducing punishment following errors would increase the discriminability of the contingencies 

in effect during the choice between comparisons. Though conceptually consistent with the 

general approach, Fisher et al. did not use the quantitative framework in their analyses. Due to 

this general lack of quantitative analysis of error patterns during conditional discriminations in 

applied research, the overall goal of the present research is to initiate the development and use of 

this quantitative framework for characterizing errors in conditional-discrimination performance 

with clinically relevant populations.  

The present study arranged two experiments assessing conditional-discrimination 

performance in children diagnosed with ASD on an automated touchscreen interface. Experiment 

1 manipulated the disparity (i.e., similarity) of sample stimuli, and Experiment 2 manipulated the 

disparity of comparison stimuli across successive conditions. A number of obstacles exist to 

applying these analyses using clinically relevant stimuli at this stage, providing justification for 

the laboratory approach. Clinically relevant stimuli necessarily are individualized, resulting in 

stimuli differing qualitatively within and among individuals, as well as in complexity, disparity, 

prior exposure, and salience. Validating these analyses with well-controlled stimuli will provide 

the necessary foundation upon which to investigate methods for manipulating the disparity of 

clinically relevant stimuli thereafter. Therefore, both experiments manipulated stimulus disparity 

by changing color saturation (i.e., lighter to darker reds) from a large disparity to a small 

disparity, followed by a return to the large disparity according to an ABA design. We calculated 

percentage correct, log d, log b (stimulus), and log b (location) throughout all conditions to 

characterize how changing similarity of the sample and comparison stimuli impacted accuracy 

and specific error patterns. Furthermore, the manipulation of disparities simulate changes in task 
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difficulty that are a natural part of teaching conditional discriminations clinically and in school 

settings.  

Experiment 1 

Method 

Participants. Alfred, Harry, and Suzie participated in this study. All participants were 

recruited from a center offering early intensive behavioral intervention (EIBI) services to young 

children diagnosed with ASD. Participants all demonstrated the ability to follow simple 

instructions, sit or stand for five-min sessions, and emit the gross-motor response of pressing the 

touchscreen device. During consent meetings, all parents reported no diagnoses of color 

blindness. 

 Alfred was six years old and had been receiving EIBI services intermittently for three 

years with continuous service for the last 15 months. He was diagnosed with ASD, Unspecified 

Disruptive Impulse-Control and Conduct Disorder, Stereotypic Movement Disorder with Self-

Injury, and Phonological Disorder. His score on the Verbal Behavior Milestones Assessment and 

Placement Program (VB-MAPP; Sundberg, 2008) was consistent with Level 3 (i.e., 30-48 

months old) and he obtained 15 out of 15 on the Visual Performance/MTS section. Harry was 

four years old, diagnosed with ASD, and had been receiving EIBI services for eight months. His 

score on the VB-MAPP was consistent with Level 3, with a score of 11 out of 15 on the Visual 

Performance/MTS section. Suzie was four years old at the beginning of the study, diagnosed 

with ASD, and had been receiving EIBI services for 11 months. Her score was consistent with 

Level 3 on the VB-MAPP, with a score of 14.5 out of 15 on the Visual Performance/MTS 

section. 
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Setting and Materials. Sessions were conducted in a small room at the university EIBI 

center. Each room contained a table and chairs, edibles, a video camera, and a touchscreen 

Windows®-based laptop with a 21.7 cm by 13.6 cm screen with sessions programmed using 

Paradigm® software (Factari, 2018). On the touchscreen, colors of the background, sample 

stimuli, and comparison stimuli were defined by RGB color values supported in all browsers. 

Training stimuli were blue (R13G1B255) or yellow (R255G255B0) for samples and 

comparisons. Experimental stimuli were light pink (R255G155B155), pink (R255G100B100), 

dark pink (R255G95B95), light red (R255G70B70), red (R255G51B51), and dark red 

(R188G0B0). The background was black (R0G0B0) throughout all sessions to guard against 

negative afterimages. Sample and comparison stimuli were 4.4 cm by 4.1 cm. Samples were 8.6 

cm from the left and right sides of the screen and 0.5 cm from the top. Comparisons were 4.8 cm 

from the top and bottom of the screen, 0.5 cm from the nearest side, and 12.9 cm from one 

another. 

Response Measurement  

The primary dependent measures were the number of correct responses and errors during 

each session. Four response types were recorded for correct responses and errors to the red and 

pink comparison stimuli. Correct responses were defined as touching the comparison stimulus 

matching or corresponding with the sample stimulus. Errors were defined as touching the 

comparison stimulus that did not match or correspond with the sample stimulus. The location 

(e.g., left or right) of correct and incorrect responses was also collected. We also recorded the 

number of missed trials in which a participant did not respond within 30 s of the sample or 

comparison presentations, although missed responses were not included in the analyses. 
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Correct responses and errors were then analyzed using Equations 1, 2, and 3 (see 

Supporting Information for examples of these analyses). We analyzed individual-participant data 

from both individual sessions and, to summarize terminal performance within conditions, 

aggregated across the final seven sessions of each of the three experimental conditions. 

Aggregation of the final sessions across conditions used Equations 1, 2, and 3 with summed 

values of correct responses and errors across all seven sessions in the respective condition. We 

included seven sessions of data to equate data counts entered into Equations 1, 2, and 3 and 

because this was the fewest number of sessions needed to complete one phase across all 

participants (Shahan & Podlesnik, 2006, 2007). 

In Equations 1 and 2, Correct11 and Correct22 refer to choosing the darker or lighter 

comparison following the darker or lighter sample, respectively. Error12 and Error21 refer to 

choosing the lighter or darker comparison following the darker or lighter sample, respectively. In 

Equation 3, Correctleft and Correctright refer to choosing the left comparison or right comparison, 

respectively, when it corresponded with the sample stimulus. In contrast, Errorleft and Errorright 

refer to choosing the left comparison or right comparison, respectively, when it did not 

correspond with the sample stimulus. 

Percent correct was calculated by dividing the total number of correct responses by the 

total number of completed trials for the session and multiplying by 100. Equations 1, 2, and 3 

cannot be calculated with a zero value in one of the four response categories. Therefore, we 

added a constant (0.25) to each response category when calculating log d, log b (stimulus), and 

log b (location), as described previously (e.g., Alsop, 2004; Brown & White, 2005; Hautus, 

1995). With 24 trials per session and the 0.25 added correction to each cell of Equations 1, 2, and 

3, the minimum and maximum log d, log b (stimulus), and log b (location) were ±1.69 if the 
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numerators or the denominators were zero values. Arithmetically, ±1.69 is a range of 47:1 to 

1:47. 

Preference Assessment 

Small pieces of preferred edibles served as primary reinforcers. Caregivers and clinicians 

nominated putative highly preferred edibles for each participant. Before each session, the 

experimenter conducted a brief multiple-stimulus-without-replacement (MSWO) preference 

assessment (Carr, Nicolson, & Higbee, 2000). The same choices were displayed in each MSWO 

for the remainder of the study. The first two edibles selected during the MSWO were randomly 

selected and delivered after each correct response along with praise and a star.  

Procedures  

Depending on availability, participants attended experimental sessions two to three times 

per week, with two to five sessions being conducted per visit. All training and experimental 

sessions consisted of 24 trials, with the exception that training consisted of 25 trials per session 

for Harry only. The 24 trials per session comprised of 12 presentations of each sample with the 

order and location of the sample and comparison stimuli counterbalanced in a predetermined list 

that was shuffled prior to the beginning of each session. For Harry’s training, the list restarted 

after 24 trials and he received one additional presentation of one trial type. Reinforcer deliveries 

were comprised of preferred edibles presented by the experimenter, along with praise (e.g., “You 

got it!”) and a 3-s presentation of a 5 x 5 cm star image positioned 8.2 cm from the sides and 4.2 

cm from the top and bottom, followed by a 2-s black screen. Errors were followed by a 5-s black 

screen only. The next trial initiated following the offset of the black screen. Across participants, 

session duration averaged 2.9 min (Range: 1.9-5.2 min). 
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Training. An experimenter taught participants to respond during the MTS procedure on 

the touchscreen device. Participants were first exposed to a blue or yellow sample stimulus. 

Touching the sample once removed the sample and presented one identical comparison stimulus 

on one side of the touchscreen. Touching the comparison stimulus resulted in a reinforcer 

delivery. At the beginning of training, the participant was instructed to “do this” with a model or 

physical prompt as needed. A most-to-least prompting strategy (e.g., full physical, partial 

physical, tap, gesture) was used to fade prompts (MacDuff, Krantz, McClannahan, 2001). 

Once accurate responding occurred reliably and independently for 95% of trials or higher 

across two consecutive sessions, two comparison stimuli were presented following sample 

presentations – one comparison stimulus was identical to the sample. Choosing the correct, 

identical comparison resulted in reinforcer delivery (edible and praise) and touching the 

incorrect, non-identical comparison resulted in the black screen. Our original criterion for 

participants to begin experimental sessions was independent correct responses at or above 90% 

for two consecutive sessions. However, accuracy for Alfred and Harry did not reliably increase 

above 90% despite being reliably above chance. Therefore, we began experimental sessions with 

Alfred and Harry once responding occurred independently and we determined percent correct to 

be stable. Alfred, Harry, and Suzie were exposed to nine, thirteen, and four sessions, 

respectively, of training with the MTS procedure before beginning experimental sessions (data 

not shown but available from last author upon request).  

 Experimental sessions. The procedural arrangement was similar to training sessions 

with the exception of including two comparisons in the array, providing no prompts, changing 

the color of the stimuli, and the inclusion of non-identical MTS trials. The samples during Phases 
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1 and 3 had greater visual disparity than during Phase 2. The effects of sample disparity on 

responding were evaluated within an ABA experimental design. 

Phases 1 and 3: High disparity. The sample stimuli were light pink and dark red, while 

the comparison stimuli were pink and red (see Supporting Information). Correctly touching the 

pink comparison after the light pink sample and touching the red comparison after the dark red 

sample resulted in reinforcer delivery. Errors only produced the black screen. Following Phase 1, 

Phase 2 began once accurate responding reached stability with no increasing or decreasing trends 

using visual inspection (Sidman, 1960). Following Phase 2, Phase 3 began once responding 

reached stability again. 

Phase 2: Low disparity. Sample stimuli were more similar (lower disparity) compared 

with Phase 1. Sample stimuli were the dark pink and light red (see Supporting Information). 

Comparison stimuli were identical with those in Phase 1. Correctly touching the pink comparison 

after the dark pink sample and touching the red comparison after the light red sample resulted in 

reinforcer delivery. Errors only produced the black screen. 

Procedural Integrity 

We assessed procedural integrity for delivery of edibles during presentations of the star 

onscreen during reinforcer deliveries for 33% of sessions. Procedural integrity was assessed for 

each session by dividing the total number of trials implemented with integrity by the total 

number of trials in a session, and then converting the result to a percentage. Procedural integrity 

was 100% for Alfred and Sally and 99% (range 96-100%) for Harry. 

  Analytical Plan 

            As a complement to visual analysis, error patterns were also evaluated using a linear 

mixed-effects (i.e., multi-level) modeling approach (DeHart & Kaplan, 2019). Briefly, mixed-
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effects models are often used in various fields (e.g., ecology) to answer questions when data fail 

to meet the assumptions (i.e., absence of outliers) of more commonly used tests (e.g., Analysis of 

Variance). This approach has been increasingly applied to the time-series data included in single-

case research designs, even with small groups of participants – see DeHart and Kaplan (2019) for 

a demonstration with humans and Nall et al. (2019) for a demonstration with non-humans. 

Although presented and interpreted here, the goal of these analyses were exploratory and to 

obtain measures of effect that would support larger, more expanded trials in the future. 

Specifically, this modeling approach was to ascertain the effects of disparity on each of the log d, 

b (stimulus), and b(location) measures. In each of these separate analyses of the level of disparity 

(i.e., High, Low) was entered as a fixed effect. Although simpler methods could be applied, 

comparisons using mixed-effects avoid the undesirable compression of individual variability into 

singular means or ranks across phases or groups (DeHart & Kaplan, 2019). Study analyses were 

performed using the R Statistical Program (R Core Team, 2018) using the lme4 package (Bates 

et al., 2015). In separate analyses of log d, b (stimulus), and b (location) the level of disparity 

(i.e., High, Low) was included as a fixed effect (Phase) and random effects (i.e., varying 

intercepts, slopes) were included as appropriate following the results of likelihood ratio tests. 

Results and Discussion 

Figure 2 shows percent correct, log d, log b (stimulus), and log b (location) for Alfred, 

Harry, and Suzie across successive sessions of the High, Low, and High Disparity conditions. In 

the top row of Figure 2, the percent correct was higher during the High Disparity conditions than 

during the Low Disparity conditions for all participants. Table 1 shows that reinforcers per 

session also were higher during the High Disparity conditions than during the Low Disparity 

conditions for all participants. The lower obtained reinforcers per session during the Low 
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Disparity condition is expected because the reinforcers are delivered according to FR 1 schedules 

for accurate matches. 

Decreases in percent correct show a decrease in performance with lower sample disparity 

but do not indicate whether the increase in errors resulted from decreases in discriminability only 

or the development of stimulus or location biases. In the second row of Figure 2, log d (i.e., 

discriminability) also was higher during the High Disparity conditions than during the Low 

Disparity conditions for all participants. Thus, changes in sample disparity across phases resulted 

in anticipated changes in log d – low sample disparity reduced discriminability. Stated another 

way, discriminability was lower when the samples appeared more similar.  

The third and bottom row of Figure 2 show bias as log b (stimulus) and as log b 

(location), respectively. Zero values along the y-axis indicate no bias. Positive values for log b 

(stimulus) in the third row indicate more responses toward Comparison Stimulus 1 than 2 and 

negative values indicate more responses toward Comparison Stimulus 2 than 1. Positive values 

for log b (location) in the bottom row indicate more responses toward the left comparison 

stimulus than right and negative values indicate more responses toward the right comparison 

stimulus than left. We included gray bands to signal the range of values within which errors are 

unlikely to reflect patterns of bias but, instead, are more likely to reflect general patterns of 

variability. The gray bands ranging ±0.368 in log units (arithmetically, 2.3:1 to 1:2.3) indicate 

the range in which values would appear if produced by a single error across all 24 trials (e.g., 

Alfred’s final six sessions). In such cases, overall accuracy can remain relatively high despite 

bias values being nonzero. Many other combinations of errors could also fall within the gray 

bands but would nevertheless reflect only minor deviations from zero bias. In addition, 

occasional values falling outside these bands likely reflect only general patterns of variability in 
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behavior rather than reliable patterns of bias. In contrast, values reliably falling outside these 

bands would indicate patterns of bias, especially when accompanied by low levels of accuracy.  

In the third row of Figure 2, log b (stimulus) typically fell within the gray bands and only 

occasional individual values extended beyond the gray bands (e.g., Sessions 17 and 19 for 

Suzie). Therefore, no reliable stimulus bias appeared in most conditions across participants. In 

the Low Disparity condition for Harry only, in contrast, log b (stimulus) was negative and 

extended beyond the gray bands for 8 of 12 sessions. This pattern of negative log b (stimulus) 

values indicate a bias for Comparison Stimulus 2 when the sample disparity was low. Thus, 

Harry’s performance in the Low Disparity condition show that decreases in sample disparity 

certainly impact discriminability, as shown by log d above, but decreases in disparity also can 

produce bias.  

In the bottom row of Figure 2, log b (location) typically fell within the gray bands during 

most conditions for the three participants. However, 5 of 7 of Alfred’s sessions during the first 

High Disparity condition fell above the gray band, indicating a bias pattern for the left 

comparison. Nevertheless, accuracy remained relatively high during these sessions and, with a 

few exceptions (e.g., Sessions 12, 15, and 19), log b (location) typically remained within the gray 

band for the remainder of the experiment. Therefore, log b (location) across participants was 

minimal and/or transitory. 

Figure 3 shows the obtained log (base 10) reinforcer ratio between the two comparison 

stimuli (top row) and the obtained log reinforcer ratio between the two comparison locations 

(bottom row) across conditions for all participants. A positive log ratio indicates a greater 

number of reinforcers obtained in a session from Comparison Stimulus 1 than Comparison 

Stimulus 2 (top panel) and from the left-comparison location than the right-comparison location 
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(bottom panel). A negative log ratio indicates a greater number of reinforcers obtained in a 

session from Comparison Stimulus 2 than Comparison Stimulus 1 (top panel) and from the right-

comparison location than the left-comparison location (bottom panel). Log values of ±1.0 

indicate a 10:1 or 1:10 arithmetic difference in reinforcer frequency between comparison stimuli 

or locations during a given session (typical of analyses used with the matching law; e.g., Baum, 

2010).  

The noteworthy patterns in the log reinforcer ratios from Figure 3 were the 

correspondences with log b (stimulus) and log b (location) from Figure 2. The clearest example 

is Harry’s log reinforcer ratio between comparison stimuli in the top panel of Figure 3 

approximating zero on average in the High Disparity conditions but was reliably negative in the 

Low Disparity condition – these log reinforcer ratios corresponded with patterns of log b 

(stimulus) in Figure 2. Thus, bias increased for Comparison Stimulus 2 (Figure 2) along with a 

relative increase in reinforcer frequency for Comparison Stimulus 2 (Figure 3). With the Low 

Disparity condition decreasing discriminability, one interpretation is that biased responding 

toward Comparison Stimulus 2 was differentially reinforced, perhaps even in lieu of attending to 

the sample stimuli. In fact, Harry’s log d values were the lowest of the three participants during 

the Low Disparity condition. Increases in biases have been observed when discriminations 

become more difficult with increases in complexity of sample stimuli (e.g., Dube & McIlvane, 

1997, 1999). Other examples of biases corresponding with log reinforcer ratios were less 

dramatic than Harry’s performance but nevertheless apparent across all participants. A 

particularly noteworthy example is how Suzie’s log reinforcer ratio between comparison stimuli 

trended negative toward the end of the Low Disparity condition when log b (stimulus) also 

trended to negative values (see also Miles in Schneider et al., 2018). Continuation of the Low 
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Disparity condition might have produced a stimulus bias similar to Harry’s. Overall, changes in 

log reinforcer ratios corresponded with shifts in bias measures, as shown in previous research 

(e.g., Alsop et al., 2016) and predicted by Davison and Tustin’s (1978) framework. It is not 

possible, however, to specify whether biases drove changes in log reinforcer ratios or vice versa 

given the use of the rich ratio schedules. We discuss this issue in greater detail in the General 

Discussion.   

   Changes in percent correct were more closely related to changes in discriminability (log 

d) than biases (log b) for comparison stimuli or locations. For two participants (Alfred and 

Suzie), there was little relation between percent correct and log b measures, although Suzie 

demonstrated a stimulus bias toward the end of the Low Disparity condition. For these 

participants, decreases in correct responding in the Low Disparity condition were generally 

associated with continued responding across comparison stimuli and locations in the array. Thus, 

reductions in correct responding were not related to a particular pattern of biased responding for 

Alfred and Suzie. In comparison, changes in Harry’s percent correct was related to changes in 

log b (stimulus). These findings reveal the utility of Davison and Tustin’s (1978) analysis for 

quantitatively separating changes in conditional-discrimination performance by the specific error 

patterns comprising that performance, whether they are due to a single pattern (Alfred) or a 

combination of errors due to discriminability and bias (Suzie and Harry). These findings have 

implications for characterizing conditional-discrimination performance during clinical 

interventions – this quantitative framework could be used to identify error patterns from which 

procedures could be developed or employed specifically to target those error patterns.  

  Manipulating sample disparity primarily influenced discriminability for Alfred but 

produced a combination of discriminability and bias errors for Harry and briefly for Suzie. These 
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results are consistent with previous laboratory research that found both patterns of effects. For 

example, Gallagher and Alsop (2001) manipulated sample disparity with university students by 

adjusting the relative duration of auditory sample stimuli (tones) and observed decreases in log d 

when decreasing sample disparity, while log b did not change (see also Alsop, Rowley, & Fon, 

1995; McCarthy & Davison, 1980). Findings showing only the influence of sample disparity on 

log d and not log b are consistent with the assumptions of Davison and Tustin’s (1978) 

framework. However, not all findings support those assumptions. For example, Godfrey and 

Davison (1998) observed systematic changes in log d with changes in sample disparity but also 

observed systematic changes in log b with pigeons (see also Alsop & Davison, 1991; Nevin, 

Cate, & Alsop, 1993). It should be noted that the studies observing systematic changes in log b 

with changes in sample disparity tended to manipulate sample disparity over a wider range of 

conditions than those that did not. Therefore, shifts in bias might have occurred more reliably in 

the present study with greater changes in sample disparity. To this effect, Harry’s performance 

produced the lowest log d values of all participants in the Low Disparity condition, and a reliable 

stimulus bias emerged in that condition. 

Statistical Comparisons 

            Linear mixed-effects modeling was performed using for each of the derived error metrics. 

For log d values, modeling performed best with slopes and intercepts for Phase and Time varying 

at the individual subject level. Results indicated a significant effect for Phase (β = -0.86826, SE = 

0.084, t = -10.43, p < .001), whereby the High disparity conditions had an overall value of 

1.0368 and the Low disparity conditions an overall value of 0.16858. Modeling for each of the 

log b values supported the varying of Phase and intercepts at the individual subject level. For log 

b (stimulus), results indicated a non-significant effect for Phase (β = - 0.26320, SE = 0.249, t = -
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1.054, p = .0368) whereby the High disparity conditions had an overall log b (stimulus) value of 

0.06669 and the Low disparity conditions an overall value of -0.19651. Lastly, results for log b 

(location) indicated a non-significant effect for Phase (β = 0.06588, SE = 0.1013, t = 0.650, p = 

.555) whereby the High disparity conditions had an overall log b (location) value of 0.03877 and 

the Low disparity conditions an overall value of 0.10465. As such, these findings concur with 

those from visual analysis and support the conclusions that decreases in discriminability (i.e., log 

d) were reliably predicted by the level of sample disparity. 

Experiment 2 

In addition to manipulating sample disparity, laboratory research also examined the effect 

of manipulating disparity of the comparison stimuli during conditional discriminations (Alsop & 

Davison, 1991; Alsop, Rowley, & Fon, 1995; Gallagher & Alsop, 2001; Godfrey & Davison, 

1998; Nevin, Cate, & Alsop, 1993). For example, Gallagher and Alsop manipulated disparity of 

comparison stimuli by adjusting the relative pixel density between stimuli. In these studies, 

decreasing comparison disparity decreased log d, consistent with the effects of manipulating 

sample disparity described above. These studies suggest errors stemming from reductions in 

comparison-stimulus disparity also could be evaluated using Davison and Tustin’s (1978) 

framework when teaching conditional discriminations. Therefore, Experiment 2 examined 

changes in disparity of the comparison stimuli on percent correct, log d, log b (stimulus), and log 

b (location) in children diagnosed with ASD.  

Method 

Participants, setting, and materials. Ari, Malik, and Pax participated in the second 

experiment. They were recruited and met the inclusion criteria from Experiment 1. Ari was 7 

years old and had been receiving EIBI services for 38 months. An independent clinician not 
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associated with the center diagnosed him with ASD accompanied by language impairment and 

Avoidance/Restrictive Food Intake Disorder. His score was consistent with Level 3 on the VB-

MAPP, with a score of 13 out of 15 on the Visual Performance/MTS section. Malik was four 

years old, diagnosed with ASD by an independent clinician not associated with the center, and 

had been receiving EIBI services for 12 months. His VB-MAPP score was consistent with Level 

3, with a score of 15 on the Visual Performance/MTS section. Pax was four years old, diagnosed 

with ASD with language impairment by an independent clinician not associated with the center, 

and had been receiving EIBI services for 16 months. His VB-MAPP score also was consistent 

with Level 3, and a score of 10.5 out of 15 on the Visual Performance/MTS section. 

All aspects of the setting and materials were consistent with those arranged in 

Experiment 1. Ari, Malik, and Pax were exposed to four, three, and four sessions, respectively, 

of training with the MTS procedure before moving to experimental sessions (data not shown but 

are available upon request). All three participants met the criterion in training that accuracy of 

independent responding was at or above 90% to begin experimental sessions. 

Procedures  

All aspects of the procedures were consistent with those arranged in Experiment 1, with 

the exception that the sample stimuli remained identical across phases while comparison stimuli 

were manipulated across phases. 

Phases 1 and 3: High disparity. The sample stimuli were pink and red, while the 

comparison stimuli were light pink and dark red (see Supporting Information). Correctly 

touching the light pink comparison after the pink sample and touching the dark red comparison 

after the red sample resulted in reinforcer delivery (edible and praise).  
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Phase 2: Low disparity. Comparison stimuli were more similar (lower disparity) than 

those arranged in Phase 1. Sample stimuli were identical with those in Phase 1. Comparison 

stimuli were the dark pink and light red samples. Correctly touching the dark pink comparison 

after the pink sample and touching the light red comparison after the red sample resulted in 

reinforcer delivery.  

Procedural Integrity 

 Procedural integrity in Experiment 2 was evaluated using the same methods described in 

Experiment 1 and was 100% for all three participants from 33% of sessions. 

Analytical Plan 

            Participant responding in Experiment 2 was statistically evaluated using the same manner 

as described in the methods of Experiment 1. 

Results and Discussion 

Figure 4 shows percent correct, log d, log b (stimulus), and log b (location) for Ari, 

Malik, and Pax across successive sessions of the High, Low, and High Disparity conditions. In 

the top row of Figure 4, percent correct was higher during the High Disparity conditions than 

during the Low Disparity conditions for all participants. Consistent with Experiment 1, Table 1 

shows that reinforcers per session also were higher during the High Disparity conditions than 

during the Low Disparity conditions for all participants.  

In the second row of Figure 4, log d also was higher during the High Disparity conditions 

than during the Low Disparity conditions for all participants. Thus, decreasing comparison 

disparity generally reduced discriminability. In the third row, log b (stimulus) did not change 

reliably across phases for any of the participants as a function of stimulus disparity, with the 

exception of a decrease in variability during the Low Disparity condition for Pax. In the bottom 
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row, log b (location) also did not change reliably across phases for any of the participants as a 

function of stimulus disparity. However, log b (location) gradually decreased toward the end of 

the Low Disparity condition for Pax and gradually increased at the beginning of the final High 

Disparity condition. The shift in log b (location) suggests the decrease in comparison disparity 

likely produced a bias in addition to the decrease in discriminability. Nevertheless, the overall 

trend across participants is that decreases in percent correct were more related to changes in 

discriminability than shifts in stimulus or location biases.  

Figure 5 shows the obtained log reinforcer ratio between the two comparison stimuli (top 

row) and between the two comparison locations (bottom row). As in Experiment 1, changes in 

bias tended to relate with changes in log reinforcer ratios. Specifically, log b (stimulus) shown in 

Figure 4 changed with changes in log reinforcer ratio between comparison stimuli in Figure 5. 

Similarly, Figure 5 shows that log b (location) corresponded with changes in log reinforcer ratio 

between comparison locations from Figure 4. For a particularly clear example with Pax, the log 

reinforcer ratio between comparison locations trended negative toward the end of the Low 

Disparity condition when log b (location) also trended to negative values. Next, both the log 

reinforcer ratio between comparison locations and log b (location) approached zero values upon 

returning to the High Disparity condition. These findings are similar to those observed with 

Suzie’s log reinforcer ratios between comparison stimuli and log b (stimulus) values at the end of 

the Low Disparity condition in Experiment 1. As with Experiment 1, changes in log reinforcer 

ratios might have functioned to shift biases, which has been shown in previous research (e.g., 

Alsop et al., 2016) and as predicted by Davison and Tustin (1978). However, it is not possible to 

determine precisely the direction of effects or interactions between biases and log reinforcer 

ratios. We discuss this issue in greater detail in the General Discussion. 
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 Consistent with manipulating sample disparity in Experiment 1, manipulating comparison 

disparity across conditions in the present experiment produced corresponding changes in 

accuracy as measured by percent correct. Also similar to Experiment 1, changes in percent 

correct were closely related with changes in discriminability (log d), while biases (log b) for 

comparison stimuli or locations were not well related with changes in percent correct. 

Nevertheless, Pax’s responding also showed a change in log b (location) at the end of the Low 

Disparity condition. Previous laboratory research also has found complex relations between 

changes in comparison disparity and biases. For example, Gallagher and Alsop (2001) 

manipulated comparison disparity by adjusting the relative pixilation for two visual comparison 

stimuli. Similar to the present study, decreasing comparison disparity decreased log d reliably 

but also tended to change log b (see also Alsop & Davison, 1991; Godfrey & Davison, 1998; 

Nevin, Cate, & Alsop, 1993). It should be noted that the link between the present procedures and 

these previous studies is somewhat complicated by the fact that these studies also manipulated 

relative reinforcer frequencies between comparisons. Nevertheless, the present findings and 

those from previous studies clearly show that manipulating comparison disparity can produce 

complex error patterns involving both errors of discriminability and biases. These error patterns  

would not be elucidated using the traditional measure of percent correct and, as a result, 

demonstrate how Davison and Tustin’s (1978) framework can describe different error patterns 

comprising conditional-discrimination performance. Thus, further development of these analyses 

for clinical use could provide analyses for identifying error patterns when teaching conditional 

discriminations. 

Statistical Comparisons 
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            Linear mixed-effects modeling was performed using for each of the derived error metrics. 

For log d values, modeling performed best with slopes and intercepts for Phase and Time varying 

at the individual subject level. Results indicated a significant effect for Phase (β = -1.35193, SE = 

0.084, t = -15.93, p < .001), whereby the High disparity conditions had an overall value of 

1.46967 and the Low disparity conditions an overall value of 0.11774. Modeling for each of the 

log b values support the varying of individual intercepts alone at the individual subject level. For 

log b(stimulus), results indicated a non-significant effect for Phase (β = -0.12733, SE = 0.058, t = 

-2.181, p = .032) whereby the High disparity conditions had an overall log b (stimulus) value of 

0.05145 and the Low disparity conditions an overall value of -0.07588. Lastly, results for log b 

(location) indicated a non-significant effect for Phase (β = -0.04266, SE = 0.078, t = -0.546, p = 

.587) whereby the High disparity conditions had an overall log b (location) value of -0.02623 

and the Low disparity conditions an overall value of -0.06889. As such, these findings concur 

with those from visual analysis and support the conclusions that decreases in discriminability 

(i.e., log d) were reliably predicted by the level of comparison disparity. 

General Discussion 

The present experiments manipulated disparity of sample (Experiment 1) and comparison 

(Experiment 2) stimuli during conditional discriminations presented to children diagnosed with 

ASD. In both experiments, decreasing stimulus disparity decreased percent correct. We further 

analyzed the data from both experiments using Davison and Tustin’s (1978) quantitative 

framework based on behavioral-choice and signal-detection theory. In doing so, we identified the 

error patterns comprising changes in conditional-discrimination performance across conditions, 

which is not possible with the more traditional measure of percent correct. The decreases in 

percent correct with reduced sample or comparison-stimuli disparity were more reliably due to 
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decreases in discriminability (log d), rather than changes in biases (log b) for a comparison 

stimulus or location. However, there were some isolated instances in which errors of both 

discriminability and bias contributed to decreases in percent correct, indicating the potential 

clinical usefulness of these quantitative methods for identifying error patterns. Specifically, these 

analyses could be used to (1) identify multiple sources of error patterns and (2) provide a basis 

for research that investigates antecedent- and consequence-based interventions based on those 

error patterns. Identifying interventions based on error patterns could lead to more individualized 

and, thereby, more efficacious interventions when teaching conditional discriminations (Kodak 

et al., 2011).  

 We observed reliable relations between percent correct and log d when changing sample 

and comparison disparity between experiments. These findings suggest that decreases in sample 

and comparison disparity primarily impacted percent correct through changes in discriminability, 

rather than bias. If changes in discriminability (log d) exclusively accounted for changes in 

percent correct (rather than bias), these findings would support the suggestion of Davison and 

Tustin (1978) that the variables impacting discriminability (e.g., disparity) and bias (e.g., 

differential reinforcement) theoretically should be independent. There were some instances in 

which reduced sample disparity appeared to influence biases (see also Gallagher & Alsop, 2001). 

Any changes to bias with changes in sample or comparison disparity would indicate interactions 

between variables assumed by Davison and Tustin’s framework to influence discriminability and 

bias independently, such as sample/comparison disparity and differential reinforcement (Alsop, 

1991; Davison, 1991; Davison & Nevin, 1999). Therefore, changes in bias with decreases in 

comparison disparity would be inconsistent with predictions of Davison and Tustin’s (1978) 

theoretical framework – variables influencing discriminability should be independent of changes 
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in bias, and vice versa. Additional research should assess a larger number of participants, as well 

as systematically manipulate variables predicted to influence biases (e.g., differences in 

reinforcer probabilities or amounts). Nevertheless, finding that these measures could identify 

changes both to discriminability and biases points to the usefulness of Davison and Tustin’s 

descriptive framework. Specifically, Davison and Tustin’s framework likely is less useful for 

predicting how particular variables will influence discriminability and biases but can be useful 

for describing error patterns produced by environmental changes (e.g., changes in sample or 

comparison disparity). As such, the present findings suggest Davison and Tustin’s quantitative 

framework could be developed clinically to identify error patterns during the teaching of 

conditional discriminations. 

When biases occur, it is important and potentially practical to ask what produced biases 

with changes to sample and comparison disparity in the present experiments. A simple 

explanation is differential reinforcement. Specifically, discriminations were difficult or 

impossible with low disparity and, as a result, reinforcement for solving the conditional 

discriminations was no longer reliably forthcoming. Choosing a particular comparison stimulus 

or location could at least reduce the effort required to obtain reinforcement on approximately 

50% of trials, equivalent to reinforcement likelihood at chance performance with zero 

discriminability. Such differential reinforcement might be what underlies at least some instances 

of stimulus overselectivity often identified during complex discriminations in individuals 

diagnosed with cognitive disabilities (Dube & McIlvane, 1997, 1999). It should be noted that 

responding could be biased toward a particular comparison stimulus or location with low sample 

disparity, but low comparison disparity likely would only result in a bias for a comparison 

location because the comparisons are programmed to be difficult to discriminate. That is, the 
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comparisons would have to be discriminated even to show a bias to a particular stimulus, which 

is unlikely when comparison disparity is low. 

With low sample or comparison disparity, participants also could begin choosing 

comparisons randomly to similar effect of reducing response effort to obtain reinforcement on 

approximately 50% of trials. Choosing randomly would appear only as sustained low 

discriminability and no change in bias. Thus, log d would not distinguish random responding as a 

different pattern of choices from simply performing poorly while continuing to attend to the task.  

 The primary implication of the present findings and analyses for clinical application is 

the ability to identify and quantify error patterns in conditional-discrimination performance 

(Alsop & Davison, 1991; Godfrey & Davison, 1998; Nevin, Cate, & Alsop, 1993). Difficult 

conditional discriminations could produce changes in performance comprised of complex error 

patterns involving decreases in discriminability, shifts in bias, or a combination of bias and 

discrimination errors (Dube & McIlvane, 1997; Grow et al., 2011; Schneider et al., 2018; see 

Sidman, 1980). In the least, the present analyses allow researchers and, with further 

development, practitioners the ability to identify error patterns where the traditional measure of 

percent correct is insufficient. Further assessments could be developed to identify the processes 

underlying error patterns identified by this framework. Using these data, subsequent extensions 

of this methodology can be expanded to include other factors that may contribute to errors 

patterns, such as age, specific disability, and other co-morbid conditions. 

 With additional research aimed at applying these quantitative methods, a contribution of 

categorizing errors of discriminability and bias is the potential for implementing antecedent- and 

consequence-based interventions based on specific error patterns. Error patterns could yield data-

based information for guiding practitioners in making clinical decisions when clients are not 
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making progress. For example, identifying whether a participant is making persistent errors 

because of biases or reduced discriminability can inform the practitioner or researcher to make 

either antecedent or consequent manipulations based on the kinds of errors emitted by the 

individual. If these equations depict that errors are due to low discriminability, practitioners 

could increase the salience of the sample stimuli to increase accuracy (e.g., elongate the samples; 

Fisher et al., 2019) or introduce differential observing responses (e.g., Dube & McIlvane, 1999). 

In contrast, location biases might suggest prompting and reinforcement for responses to other 

locations and/or repetition of error trials during error correction (e.g., Bourret, Iwata, Harper, & 

North, 2012).  

The present analyses extend existing approaches to categorizing error patterns in 

conditional discriminations (Grow et al., 2011; Schneider et al., 2018). Grow et al. categorized 

errors as molar win-stay errors, molecular win-stay errors, and errors from position biases during 

conditional discriminations arranging auditory samples and visual comparisons. They arranged 

three comparison stimuli across nine trials per session with three children diagnosed with ASD. 

Win-stay errors are analogous to errors that would be categorized as log b (stimulus) with the 

present Davison and Tustin (1978) analyses; position biases are analogous to errors categorized 

by log b (location). All error types were calculated as a percentage of total trials within a session. 

The authors did not categorize errors based on discriminability. Their approach is limited by the 

data-collection process which is intensive and requires expertise to identify and analyze the 

potential error patterns. In contrast, recording errors based on chosen comparison stimuli and 

location within each session can be entered into a spreadsheet to calculate discriminability and 

bias errors, if an automated system is not used as in the present study. Data collection and 

analysis optimized for clinical settings is an area for further research with this general approach. 
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Relatedly, Schneider et al. (2018) also categorized error patterns during auditory-visual 

conditional discriminations as stimulus and position (location) bias among four different 

comparison stimuli using a touchscreen with four typically developing children. They set criteria 

for biases based on the number of choices for a given comparison out of 16 trials per session. 

Positive biases were defined as selecting a particular stimulus or location in six or more trials per 

session for three consecutive sessions. Negative biases were defined as selecting a particular 

stimulus or location in two or fewer trials per session for three consecutive sessions. They 

generally found biases to be mild and did not persist across more than three sessions. In addition, 

they concluded that biases detected in these analyses could not account for all errors. Therefore, 

these analyses only infer discriminability errors by those errors that are not from a source of bias 

(Grow et al., 2011). The advantage of using Davison and Tustin’s analyses is that bias and 

discriminability error patterns are expressed quantitatively. Thus, biases are not categorized as 

present versus absent but as a matter of degree. Under some conditions, researchers or clinicians 

might choose to set criteria based on particular values of log b (as we did with the gray bars 

indicating a single error in Figures 2 and 4), but such criteria are not necessary for assessing 

biases. 

In the present experiments, we made stability judgments based only on percent correct. 

As a result, we observed changes in bias for some participants (Suzie and Pax) at the end of the 

Low Disparity conditions in both experiments. It would be useful to base stability on log d and 

log b values, too. We could have extended these conditions to examine whether those biases 

persisted. Clinically, observing the development of bias could prompt an intervention to reduce 

the likelihood that a persistent and disruptive error pattern develops. Moreover, tracking log d 

and log b values closely could suggest utility in assessing correlations of percent correct with log 
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d and log b values across sessions. Such correlations could be useful for assessing how such 

error patterns contribute to overall performance and making judgments about implementing 

antecedent- and consequence-based manipulations. 

 Our ultimate goal in conducting these experiments is to develop these analyses for use by 

clinicians. However, there are additional steps required before these analyses can be 

implemented effectively and practically in clinical situations. First, there were several 

differences between the conditional discriminations arranged in the present experiments and 

those typically arranged during clinical research and practice. Our procedures included only two 

comparison stimuli in contrast to arrays of three or more comparison stimuli in clinical research 

and practice. Davison and Tustin’s (1978) analyses can accommodate more than two 

samples/comparisons by conducting the analyses in a pairwise fashion among the three or more 

trial types. For example, Godfrey and Davison (1998) reported that discriminability measures for 

pairs of stimuli did not change when additional sample and comparison stimuli were added to an 

array. As a result, there would be log d and log b values comparing performance individually 

between all combinations of trial types. Future research will need to address challenges of 

arranging multiple samples and comparisons, including conducting enough trials of each type to 

detect the levels of discriminability and bias among trial types and to prepare for possible 

interactions between different combinations of samples and comparisons. 

 Second, we arranged a touchscreen interface to allow for precise presentation of stimuli 

and data collection. Much clinical research and practice uses analog procedures with tangible or 

pictoral stimuli and manual data-recording methods (i.e., paper and pencil during tabletop 

instruction). As noted above, some approaches to characterizing biases are onerous and require 

expertise perhaps infrequently present in behavioral technicians (e.g., Grow et al., 2011). 
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Nevertheless, enhanced paper data-collection systems could be devised to record the placement 

of comparison stimuli and occurrence of responses across trials. With a carefully developed 

system, these analyses could be conducted in a spreadsheet after tallying the correct and error 

responses for all trial types.  

  We used sample and comparison stimuli that could be manipulated precisely to 

demonstrate the relation between disparity, percent correct, discriminability, and bias. Most 

clinical research and practice, however, arrange clinically relevant stimuli. Although this is a 

limitation for directly translating to application, this also points to a benefit of these analyses. 

Specifically, these analyses can quantify the qualitative differences between stimuli for 

individual participants or clients. Future research should examine the use of these analyses with 

more naturalistic visual sample and comparison stimuli, as well as other types of conditional 

discriminations (e.g., auditory-visual discriminations). However, a limitation of the Davison and 

Tustin (1978) model that could result in a limitation clinically is that log d does not distinguish 

between changes in discriminability due to changes between sample stimuli versus changes in 

comparison stimuli. Nevertheless, we think the capacity to quantify discriminability and bias is a 

potential benefit making further exploration of these analyses worthwhile for clinical research 

and practice. 
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Table 1. Mean and range reinforcer frequency across 24-trial sessions of High, Low, and High 

Disparity conditions for all participants of Experiments 1 and 2.  

        Range 
Experiment Participant Condition Mean Min Max 

1 Alfred High 21 19 24 
  Low 14 12 16 
  High 23 21 23 
      
 Harry High 20 17 23 
  Low 13 9 15 
  High 18 13 21 
      
      
 Suzie High 23 20 24 
  Low 15 12 19 
  High 22 20 24 
      
2 Ari High 23 22 24 
  Low 13 9 23 
  High 23 20 24 
      
 Malik High 24 22 24 
  Low 13 9 17 
  High 24 23 24 
      
 Pax High 23 19 24 
  Low 12 8 15 
    High 21 16 23 
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Figure 1. The top panel shows a conditional-discrimination matrix. The matrix shows the two 

samples (S1 and S2) and responses to the two comparisons (C1 and C2), with correct responses 

(11, 22) and errors (12, 21). The bottom panel shows a hypothetical example of a conditional 

discrimination if the written word Dog were S1 and the written word Cat were S2. 

 

 

 

Correct11

Dog

Error12

Error21

Cat

Correct22



  Figure   2 

 

Figure 2. Percent correct, log d, log b (stimulus), and log b (location) across sessions of the High 

Disparity and Low Disparity conditions for Alfred (left column), Harry (middle column) and 

Suzie (right column) in Experiment 1. Dashed lines indicate chance performance for percent 

correct, zero discriminability for log d, and zero bias for log b (stimulus) and log b (location). 

The gray bands in the bottom two panels range from ±0.368 and indicates the values of log b 

obtained with only a single error out of 24 trials.  
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Figure 3. Log reinforcer ratio (stimulus) and log reinforcer ratio (location) across sessions of the 

High Disparity and Low Disparity conditions for Alfred (left column), Harry (middle column) 

and Suzie (right column) in Experiment 1. Dashed lines indicate equal obtained reinforcer 

frequencies between the two comparison stimuli (top panel) and locations (bottom panel). Data 

points that are asterisks are when zero reinforcers were earned from one comparison stimulus or 

location during that session and are placed at -1.5. 

 

 

 

 

 

 

 



  Figure   4 

 

Figure 4. Percent correct, log d, log b (stimulus), and log b (location) across sessions of the High 

Disparity and Low Disparity conditions for Ari (left column), Malik (middle column) and Pax 

(right column) in Experiment 2. Dashed lines indicate chance performance for percent correct, 

zero discriminability for log d, and zero bias for log b (stimulus) and log b (location). The gray 

bands in the bottom two panels range from ±0.368 and indicates the values of log b obtained 

with only a single error out of 24 trials.  
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Figure 5. Log reinforcer ratio (stimulus), log reinforcer ratio (location), and reinforcer frequency 

across sessions of the High Disparity and Low Disparity conditions for Ari (left column), Malik 

(middle column) and Pax (right column) in Experiment 2. Dashed lines indicate equal obtained 

reinforcer frequencies between the two comparison stimuli (top panel) and locations (bottom 

panel). Data points that are asterisks are when zero reinforcers were earned from one comparison 

stimulus or location during that session and are placed at -1.5. 

 

 


